标题:深度神经素学:对某些有意识的经验的某些特征及其在主要抑郁症作者中的干扰的积极推断:Maxwell J. D. Ramstead 1,2,3 Wanja Wiese 4 Mark Miller 5,6 Karl J. Friston 3机构3机构:1。加利福尼亚州麦吉尔大学精神病学系社会和跨文化精神病学系。2。文化,思想和大脑计划,麦吉尔大学,加利福尼亚大学。3。Wellcome人类神经影像学信托中心,英国伦敦大学学院。4。哲学系,德国约翰内斯·古腾堡大学。5。英国苏塞克斯大学的信息系。6。日本北海道大学人工智能和神经科学中心中心。致谢:我们非常感谢Mahault Albarracin,Axel Constant,David Foreman,Laurence Kirmayer,Julian Kiverstein和Michael Lifshitz对撰写本文有很大帮助的有益评论和讨论。这项研究得到了加拿大社会科学与人文研究委员会(MJDR)的支持,即2020年欧盟ERC Advanced Grant Xspect(MM; Ref:DLV-692739),以及Wellcome Trust Trust Princtal Research研究奖学金(KF; Ref;参考:088130/Z/Z/09/Z)。摘要:本文旨在利用自由能原则和积极的推论来理解人类第一人称意识经历的某些中心方面。更确切地说,我们通过自由能原理和主动推论探索了人类第一人称意识经历的两个核心方面。我们研究了积极推断如何能够解释有意识的经验的时间嵌套以及根据现象学哲学的第一人称体验的关注或关心。我们调查了抑郁症中这些特征的细分,并通过吸引主动推理框架来解释抑郁现象学的一些核心方面。
作为严重的急性呼吸道综合征冠状病毒2(SARS-COV-2,COVID-19)大流行继续在全球范围内传播,Covid-19疫苗接种是控制它的解决方案之一。Bnt162b2 mRNA covid-19疫苗(美国纽约州纽约州,Biontech SE,德国Mainz,德国)是日本首次可用的mRNA疫苗,自2021年2月以来,最初是给予医护人员的[1]。目前,可以使用几种类型的Covid-19疫苗,许多人正在接种疫苗[1 E 3]。尽管COVID-19疫苗接种的效率取决于疫苗的类型,但据报道,BNT162B2在预防疫苗接种的个体中有症状的Covid-19感染有效95%,表明其高效率[1]。针对COVID-19的有效药物包括地塞米松[4,5],抗病毒剂Remdesivir [6]和Janus Kinase(JAK)抑制剂Baricitinib [7],所有这些[7]目前在日本可用于COVID-19的治疗。尽管其他各种药物是用于共同治疗的治疗方法,但报告描述了它们的不确定性,包括目前可用的人;因此,没有可靠的治疗方法[8]。因此,通过疫苗接种抑制联盟-19大流行被认为很重要。然而,对疫苗接种的不良反应存在风险,并且已经报道了COVID-19疫苗的各种不良行为[9]。不良反应,例如疫苗接种部位的疼痛或发烧,是最常报道的。不良反应的一个特殊问题是过敏性症状,如果形成障碍会出现危及生命的后果的风险[1 E 3]。由于大多数人是第一次接受Covid-19疫苗,因此尚不清楚疫苗接种是否会引起不良反应,例如过敏或严重的形式释放。,很难确定过敏症的内部分裂物是否可以接收COVID-19疫苗。然而,为了验证COVID-19-19疫苗的安全性,在临床试验中排除了对疫苗成分过敏病史的内部分裂物。因此,很少有研究检查了Covid-19在过敏患者中的疫苗接种的安全性。在日本的山加塔大学医院,BNT162B2被授予医院工作人员和学生。疫苗接种后,我们进行了问卷调查,以调查其过敏病史和免疫后反应。通过分析这些数据,我们旨在验证Covid-19疫苗在具有过敏史的患者中的安全性。
1曼彻斯特大学物理与天文学学院,牛津路,曼彻斯特M13 9PL,英国2 Cern,Cern,CH-1211 Geneva 23,瑞士3,瑞士3 Triumf,Vancouver V6T 2A3,加拿大4 potericip,密西西比州密西西比州纽约市5 PETESIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPSIPTIAL INRIC INRIC,美国5 Petersitip nric Inucitif Institute, Gatchina 188300, Russia 6 KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium 7 Fakultät für Physik, Technische Universität München, D-85748 Garching, Germany 8 Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho, I-33, Inage,Chiba,263-8522,日本9物理系,约克大学,约克大学5DD,英国10高级科学研究中心(ASRC),日本原子能局(JAEA)(JAEA),日本Tokai-Mura,日本11物理学,11物理系,Box 2014, Saudi Arabia 12 Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia 13 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany 14 The Photon Science Institute, The University of Manchester, Manchester M13 9PL, United Kingdom 15苏格兰西部大学计算机,工程和物理科学学院,佩斯利PA1 2BE,英国16比利时核研究中心SCK CEN,BOERETANG 200,B-2400 MOL,比利时17 CSNSM-IN2P3德国格里夫斯瓦尔德(Greifswald)
a 澳大利亚墨尔本大学化学学院激子科学卓越研究中心,帕克维尔,VIC 3010,澳大利亚;b 比利时鲁汶大学化学系分子成像与光子学,Celestijnenlaan 200F,3001 Heverlee;c 北海道大学电子科学研究所 (Ries),日本北海道札幌市北区 N20W10,001-0020;d 马克斯普朗克聚合物研究所,美因茨,D-55128,德国 * 通讯地址:susana.rocha@kuleuven.be,james.hutchison@unimelb.edu.au 摘要:尽管取得了重大进展,但癌症仍然是全球主要的死亡原因。目前的治疗方法常常由于肿瘤切除不彻底和靶向性不强而失败,这激发了人们对替代疗法的兴趣。高温疗法利用高温杀死癌细胞或增强其对放射/化疗的敏感性,已成为一种有前途的替代疗法。最近的进展是利用纳米粒子 (NP) 作为热介质来选择性破坏癌细胞,从而最大限度地减少对健康组织的损害。这种方法称为 NP 高温疗法,分为两类:光热疗法 (PTT) 和磁热疗法 (MTT)。PTT 利用将光转化为热的 NP,而 MTT 利用由交变磁场 (AMF) 激活的磁性 NP,两者均可实现局部肿瘤损伤。这些方法具有精准靶向、微创和降低全身毒性等优势。然而,NP 高温疗法的疗效取决于许多因素,特别是 NP 特性、肿瘤微环境 (TME) 和 TME-NP 相互作用。优化这种治疗需要准确的热监测策略,例如纳米测温法和生物相关筛选模型,这些模型可以更好地模拟人体肿瘤的生理特征。本综述探讨了 NP 介导癌症热疗的最新进展,讨论了可用的纳米材料、其优缺点、表征方法和未来发展方向。我们特别关注临床前 NP 筛选技术,为其在临床试验过程中的功效和相关性提供最新视角。
1 美国芝加哥大学医学中心医学系;2 韩国首尔蔚山大学医学院峨山医学中心肿瘤学系;3 美国罗切斯特梅奥诊所综合癌症中心肿瘤内科;4 韩国水原天主教大学圣文森特医院肿瘤内科;5 首尔三星医疗中心血液学和肿瘤学;6 韩国首尔首尔国立大学医院内科、首尔国立大学医学院癌症研究所、首尔国立大学研究生院创新医学科学综合专业;7 费尔法克斯弗吉尼亚癌症专家研究所;8 俄克拉荷马大学健康科学中心和斯蒂芬森癌症中心,俄克拉荷马城;9 林肯内布拉斯加州血液肿瘤学中心血液学和肿瘤学分部;10 新不伦瑞克新泽西州罗格斯癌症研究所肿瘤内科; 11 美国杜阿尔特希望之城综合癌症中心肿瘤内科与治疗学研究系;12 韩国首尔延世大学医学院延世癌症中心肿瘤内科;13 佛罗里达癌症专家中心肿瘤内科;14 美国波士顿麻省总医院癌症中心;15 城南市首尔国立大学医学院盆唐首尔国立大学医院内科;16 韩国首尔高丽大学九老医院肿瘤科;17 休斯顿肿瘤顾问中心肿瘤内科;18 美国菲尼克斯梅奥诊所癌症中心内科;19 北京大学肿瘤医院暨研究所癌变及转化研究教育部重点实验室胃肠道肿瘤科;20 德国美因茨约翰内斯古腾堡大学; 21 MacroGenics, Inc.,罗克维尔;22 美国圣路易斯华盛顿大学医学院医学系
a 瑞士洛桑大学医院和洛桑大学精神神经科学中心药物遗传学和临床精神药理学部;b 瑞士洛桑大学医院和洛桑大学临床药学研究与创新中心;c 瑞士日内瓦大学药学院;d 瑞士日内瓦大学瑞士西部药学研究所;e 瑞士日内瓦洛桑大学瑞士西部药学研究所;f 德国曼海姆海德堡大学医学院中央精神卫生研究所分子神经影像学系;g 瑞士洛桑大学医院和洛桑大学精神病学系;h 意大利博尔扎诺博尔扎诺卫生服务区精神病学系;i 意大利博尔扎诺南蒂罗尔地区卫生服务中心儿童和青少年精神病学系; j INSERM CESP,团队 MOODS,服务医院-大学精神病学,巴黎萨克雷大学,勒克里姆林宫比塞特,法国; k Service Hospitalo-Universitaire de Psychiatrie,H ^ opital Bic ^ etre,Assistance Publique H ^ opitaux de Paris,Le Kremlin Bic ^ etre,法国; l 瑞典斯德哥尔摩卡罗林斯卡医学院检验医学系临床药理学部; m 东部州立医院,肯塔基大学心理健康研究中心,美国肯塔基州列克星敦;德国波恩联邦医疗产品研究所; o 伦敦国王学院和 MRC 伦敦医学科学研究所 (LMS)-帝国理工学院,英国伦敦; p 韩国首尔国立大学自然科学学院脑与认知科学系;q 韩国首尔国立大学医学院精神病学系;r 奥地利维也纳医科大学精神病学和心理治疗学系;s 加拿大多伦多大学坎贝尔家庭心理健康研究所、CAMH 和精神病学系;t 德国图宾根大学精神病学和心理治疗学系;u 荷兰阿森威廉敏娜医院临床药学系;v 荷兰阿森 GGZ 德伦特精神卫生服务中心;w 荷兰格罗宁根大学药学和制药科学系药物治疗学、流行病学和经济学系;x 荷兰格罗宁根大学精神病理学和情绪调节跨学科中心精神病学系; y 加拿大安大略省多伦多市成瘾与心理健康中心坎贝尔家庭心理健康研究所;z 加拿大安大略省多伦多大学精神病学系加拿大;aa 多伦多大学药理学和毒理学系,加拿大安大略省多伦多;ab 林茨大学生物医学和临床科学系,林茨大学,瑞典;ac 斯科讷大学医院临床化学和药理学,瑞典隆德;ad 西乌尔茨堡大学医院精神卫生中心、精神病学、心身疾病和心理治疗诊所和综合诊所,西乌尔茨堡,德国;ae 南丹麦奥登塞大学精神病学系,丹麦奥登塞;af 拉德布德大学精神病学系,奈梅亨,荷兰;ag 拉德布德大学 Donders 大脑、认知和行为研究所,奈梅亨,荷兰;ah 圣奥拉夫大学医院临床药理学系,挪威特隆赫姆;ai 挪威科技大学临床和分子医学系,挪威特隆赫姆; aj 意大利墨西拿大学临床与实验医学系;ak 德国雷根斯堡大学药学研究所;al 德国慕尼黑工业大学临床化学与病理生物化学研究所;am 德国亚琛工业大学医院临床药理学研究所;an 土耳其安卡拉大学药学院毒理学系;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗系;aq 德国美因茨大学医学中心精神病学和心理治疗系土耳其;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗学系;aq 德国美因茨大学医学中心精神病学和心理治疗学系土耳其;ao 日本东京新宿区庆应义塾大学医学院神经精神病学系;ap 德国西乌尔茨堡大学医院精神病学、心身医学和心理治疗学系;aq 德国美因茨大学医学中心精神病学和心理治疗学系
B.Dieny 1 , ILPrejbeanu 1 , K.Garello 2 , P.Gambardella 3 , P.Freitas 4,5 , R.Lehndorff 6 , W.Raberg 7 , U.Ebels 1 , SODemokritov 8 , J.Akerman 9 , 10 , APir 11 , P.Ac . delmann 2 , A.Anane 13 , AVChumak 12, 14 , A.Hiroata 15 , S.Mangin 16 , M.Cengiz Onbaşlı 17 , Md'Aquino 18 , G.Prenat 1 , G.Finocchio 19 , L.Lopez Diaz , R.C. esenko 22 , P.Bortolotti 13 1. Univ. 1. 格勒诺布尔阿尔卑斯大学、CEA、CNRS、格勒诺布尔 INP、IRIG、SPINTEC,法国格勒诺布尔 2. 比利时鲁汶 Imec 3. 苏黎世联邦理工学院材料系磁学与界面物理实验室,瑞士苏黎世。 4. 国际伊比利亚纳米技术实验室(INL),葡萄牙布拉加 5. 系统与计算机微系统与纳米技术工程研究所(INESC MN),葡萄牙里斯本 6. Sensitec GmbH,德国美因茨 7. 德国英飞凌科技股份公司,德国应用科学研究所,德国明斯特 9. 瑞典哥德堡大学物理系 10. 瑞典皇家理工学院工程科学学院应用物理系 11. 德累斯顿—罗森多夫亥姆霍兹中心,离子束物理和物理研究所,德国迈兴 12. 凯泽斯劳滕工业大学和州立研究中心 OPTIMAS,德国凯泽斯劳滕 13. 法国国家科学研究中心泰雷兹公司巴黎南大学巴黎-萨克雷,帕莱索,法国 14. 维也纳大学物理学院,维也纳,奥地利 15. 约克大学电子工程系,赫斯灵顿,英国 16. 洛林大学让·拉穆尔研究所,南锡,法国 17. 科克大学,伊斯坦布尔,18. 佩科维奇,那不勒斯,意大利 19. 墨西拿大学数学与计算机科学系、物理科学与地球科学系,墨西拿,意大利 20. 萨拉曼卡大学应用物理系,萨拉曼卡,西班牙 21. 约克大学物理系,马德里材料研究所,英国 22 CSIC,西班牙
CONGRESSES OF THE SOCIETY FOR EXPERIMENTAL PSYCHOLOGY // THE GERMAN SOCIETY FOR PSYCHOLOGY Society for Experimental Psychology 1904 Giesen – R. Sommer 1906 Würzburg – O. Külpe 1908 Frankfurt – K. Marbe 1910 Innsbruck – F. Hillbrand 1912 Berlin – C. Stumpf 1914 Göttingen – GE Müller 1921 Marburg – ER Jaensch 1923 Leipzig – F. Krüger 1925 Munich – E. Becher 1927 Bonn – G. Störring 1929 Vienna – K. Bühler German Society for Psychology 1931 Hamburg – W. Stern 1933 Leipzig – F. Krueger 1934 Tübingen – O. Kroh 1936 Jena – F. Sander 1938 Bayreuth – D. Kolb 1948 Göttingen – JG Allesch 1951 Marburg – H. Düker 1953 Cologne – U. Undeutsch 1955 Berlin – O. Kroh 1957 Bonn – F. Sander 1959 Heidelberg – J. Rudert 1962 Würzburg – W. Arnold 1964 Vienna – H. Rohracher 1966 Münster – W. Witte 1968 Tübingen – R. Bergius 1970 Kiel – H. Wegener 1972 Saarbrücken – P. Orlik 1974 Salzburg – E. Roth 1976 Regensburg – A. Vukovich 1978 Mannheim – L. Michel 1980 Zurich – N. Bischof 1982 Mainz – O. Ewert 1984 Vienna – B. Rollett 1986 Heidelberg – M. Amelang 1988 Berlin – K. Eyferth 1990 Kiel – D. Frey 1992 Trier – L. Montada 1994 Hamburg – K. Pawlik 1996 慕尼黑 – H. Mandl 1998 德累斯顿 – W. Hacker 2000 耶拿 – RK Silbereisen 2002 柏林 – E. van der Meer 2004 哥廷根 – Th. Rammsayer 2006 纽伦堡 – F. Lösel 2008 柏林 – PA Frensch 2010 不来梅 – F. Petermann 2012 比勒费尔德 – R. Riemann 2014 波鸿 – O. Güntürkün 2016 莱比锡 – I. Fritsche 2018 法兰克福 – H. Horz, J. Hartig (2020 维也纳 – U. Ansorge) 2022 希尔德斯海姆 – C. Bermeitinger, W. Greve
墨尔本(澳大利亚) - 2024年11月19日。Telix Pharmaceuticals Limited(ASX:TLX; NASDAQ:TLX,TELIX,TELIX,COMPANY)宣布,它将以靶向成纤维细胞激活蛋白(FAP)的新资产扩展其Theranostic管道,这是核医学中最有前途的泛型泛型目标之一。Telix的开发计划最初将重点放在膀胱癌的治疗上,并将其泌尿科系列结束,其中包括针对肾脏和前列腺癌的晚期治疗计划。fap是一种在上皮癌的肿瘤微环境中表达的泛癌标记,以及在包括肉瘤和间皮瘤在内的某些特定癌症类型的表面上。telix已签订了一套由临床验证的临床验证的临床验证的治疗和精确医学(诊断)放射性药物(诊断)放射性药物候选人,由弗兰克·罗斯(Frank Roesch)及其他的合作者在Johannes Gutenberg-universit的核化学研究所在Johannes Gutenberg-universit的核化学研究所开发的一系列全球固定协议。下一代的治疗资产是通过一种新型结构来区分的,该结构可以驱动延长的肿瘤保留率,同时最大程度地减少靶向摄入量,从而有可能克服第一代化合物所见的局限性。诊断和治疗化合物已在多种实体瘤的500多名患者中得到了临床验证,并且是多个同行评审出版物的主题1。Telix Therapeutics首席执行官Richard Valeix说:“我们很高兴与Roesch教授及其团队合作,并在这个令人兴奋的Radiopharmaceuticals上。Telix Therapeutics首席执行官Richard Valeix说:“我们很高兴与Roesch教授及其团队合作,并在这个令人兴奋的Radiopharmaceuticals上。Telix将获得已经显着降级风险的资产,并具有临床证明的安全性和功效。,我们将在膀胱癌中开发这些资产作为主要的指示,这与我们对泌尿外科癌症的关注,并探索FAP作为泛癌靶标的潜力,从而为我们的管道增添了重要价值。”名誉教授弗兰克·罗施(Frank Roesch)说:“在过去的两年中,我们的基于FAP抑制剂的Theranotantic候选人已经看到了广泛的临床前和临床评估。合作非常重要,我感谢世界各地的许多同事为推进分子的贡献。我们很高兴能与Telix一起成为放射药物创新,开发和商业化的领导者,以进一步发展并将这些候选药物带到监管批准。最终目标是改善有需要的癌症患者的诊断精度和治疗结果。”
• 啊。阿卡德。威斯。点亮。美因茨数学-国立威斯康星大学。吉隆坡|论文。美因茨科学与文学学院。数学-自然科学课 • Abh。纳特威斯。春天。布雷姆。 |论文。不来梅科学协会 • ACIAR Proc. | ACIAR 会议录 • ACOPS 年鉴。 | ACOPS 年鉴 • 声学。物理。 |声学物理学 • Acta Acad.农业。技术。 Olst.,Geod.乡村规章|奥尔斯顿农业技术学院学报。大地测量学和乡村管理 • Acta Acad.农业。技术。奥尔斯特,保护。水族。鱼。 |奥尔斯顿农业技术学院学报。水保护和渔业 • Acta Acad.农业。技术。奥尔斯特,技术。食物。 |奥尔斯顿农业技术学院学报。食品技术 • Acta Acad.农业。技术。 Olst.,兽医。 |奥尔斯顿农业技术学院学报。兽医。 • 亚得里亚海杂志。 |亚得里亚海杂志 • 亚马逊杂志。 |亚马逊日报 • Anat。 |解剖学杂志•Arct。 |北极杂志 • 生物学。克拉科夫,Bot。 | Acta Biologicala Cracowiensia。植物系列 • Acta Biol.克拉科夫,Zool。 | Acta Biologicala Cracowiensia。动物学系列 • Acta Biol.響。 |匈牙利生物学杂志 • Acta Biol.南斯拉夫。 B |南斯拉夫生物学杂志。 B 系列。微生物学 • Acta Biol.南斯拉夫语,E |南斯拉夫生物学杂志。 E 系列。鱼类学• Acta Biol.医学社会。科学。格达楠 |格丹科学协会生物与医学杂志•Biol.巴蘭。 |巴拉那生物学报 • 生物学报。来。 |委内瑞拉生物学杂志•Acta Boreal.,A |北极星杂志。 A. 科学 • Acta Bot。芬恩。 | Acta Botanica Fennica • Acta Bot.響。 |匈牙利植物学杂志 • Acta Bot。尼尔。 |荷兰植物学杂志 • 化学。斯堪的纳维亚。 | Acta Chemica Scandinaviana • Acta Chim.響。 |匈牙利化学学报 • Acta Cient。来。 |委内瑞拉科学杂志 • Acta Ecol.罪。 |中国生态学杂志•昆虫学杂志。 |昆虫学学报•昆虫学学报。芬恩。 |芬兰昆虫学学报 • 动物学报。昆虫学。 |动物昆虫学学报
