125 I-DCG04(图 3A)用于分析恶性疟原虫提取物中的半胱氨酸蛋白酶活性。标记的蛋白质通过质谱法鉴定,表明它们都属于木瓜蛋白酶家族的半胱氨酸蛋白酶,包括钙蛋白酶 1 和恶性疟原虫蛋白酶 1、2 和 3。深入分析使用相同的探针和高度同步的寄生虫种群,揭示了高度不同的恶性疟原虫活性谱,其中恶性疟原虫蛋白酶 2 和 3 的活性在滋养体阶段达到峰值,这与这些酶在血红蛋白降解中的作用一致。然而,恶性疟原虫蛋白酶 1 的活性在裂殖子阶段达到峰值。有趣的是,在这项研究中发现,恶性疟原虫蛋白酶 1 的活性谱与基于 mRNA 丰度水平预测的活性有显著不同。这一结果凸显了 ABPP 的主要优势之一,因为只标记给定酶的催化活性部分,而不管其蛋白质丰度或 mRNA 水平如何,从而可以更准确地测量细胞中的蛋白质动态。具有针对 125 I-DCG04 ABP 的肽基环氧物库的竞争性 ABPP 平台可产生对其他半胱氨酸蛋白酶具有超过 25 倍选择性的镰状细胞蛋白酶抑制剂。这种化合物导致新环状期寄生虫的百分比呈剂量依赖性下降,但不会阻止裂殖体发育和随后的破裂,这表明镰状细胞蛋白酶与血红蛋白降解或红细胞破裂无关,而是在非红细胞期寄生虫中具有特定作用。值得注意的是,这些应用并不依赖于任何专门针对这些酶的探针,而是依赖于针对半胱氨酸蛋白酶的一般反应性探针。 DCG04 探针已广泛用于标记选定的半胱氨酸蛋白酶家族。[15] 该探针基于广谱半胱氨酸蛋白酶抑制剂 E-64,这是一种含有环氧化物弹头的天然产物,已知具有抗疟活性。[16] 环氧化物是温和的亲电试剂,其反应性来自三元环张力。[10] 有趣的是,环氧化物抑制剂通常依赖于额外的基序(如肽骨架)来将分子引导至特定蛋白酶并促进目标酶的亲核攻击。正如在先前的研究中观察到的那样,针对特定酶家族筛选肽基环氧化物可以将这种看似混杂的弹头变成出乎意料的选择性小分子抑制剂和探针。[11,14]
全球疟疾2016 - 2030年的全球技术战略是通过广泛的咨询过程开发的,该过程始于2013年6月,并在2015年5月的第六十八届会议上被世界卫生大会的收养中达到了最终。该战略是与全球众多同事和合作伙伴密切合作制定的,并在全球疟疾计划主任的罗伯特·纽曼(Robert Newman),约翰·里德(John Reeder)和佩德罗·阿隆索(Pedro Alonso)的整体领导下制定。由佩德罗·阿隆索(Pedro Alonso)主持的指导委员会协调了原始策略Ciro de Quadros,Ana Carolina Santelli和Wichai Satimai,在Erin Shutes,Kristine Silvestri,Sunetra Ghosh和George Davis的秘书处支持下。
摘要 创新工具对于推进疟疾控制至关重要,并且取决于对疟蚊传播疟原虫的分子机制的理解。基于 CRISPR/Cas9 的基因破坏是一种揭示媒介-病原体相互作用的潜在生物学原理的有效方法,其本身可以成为蚊虫控制策略的基础。然而,用于对蚊子(尤其是疟蚊)进行基因改造的胚胎注射方法既困难又低效,特别是对于非专业实验室而言。在这里,我们采用了 ReMOT 控制(受体介导的卵巢货物转导)技术,将 Cas9 核糖核蛋白复合物递送至成年蚊子卵巢,从而无需注射胚胎就在疟疾媒介斯氏疟蚊中产生有针对性的可遗传突变。在疟蚊中,ReMOT 控制基因编辑与标准胚胎注射一样有效。 ReMOT 控制对按蚊的应用,为缺乏设备或专业知识进行胚胎注射的疟疾实验室揭示了 CRISPR/Cas9 方法的威力,并建立了 ReMOT 控制对不同蚊子物种的灵活性。
自动疟疾诊断是机器学习(ML)的困难但高价值的目标,有效的算法可以挽救数千个儿童的生命。但是,当前的ML努力在很大程度上忽略了关键的用例限制,因此在临床上没有用。尤其是两个因素对于开发可翻译为临床领域设置的算法至关重要:(i)对ML溶液必须适应的临床需求的清晰了解; (ii)指导和评估ML模型的与任务相关的指标。对这些因素的忽视严重阻碍了过去在疟疾上的ML工作,因为所产生的算法与临床需求不符。在本文中,我们通过显微镜诊断为GIEMSA染色的血液纤维来解决这两个问题。预期的受众是ML研究人员以及评估疟疾ML模型性能的任何人。首先,我们描述了为什么领域专业知识对于有效地将ML应用于疟疾,并列出提供此领域知识的技术文档和其他资源至关重要。第二,我们详细介绍了针对疟疾诊断的临床要求量身定制的性能指标,以指导ML模型的开发并通过临床需求的镜头(与通用ML镜头)评估模型性能。我们强调了患者级别的观点,室内变异性,假阳性率,检测限制和不同类型的错误的重要性。我们还讨论了ML工作中常用的ROC曲线,AUC和F1的原因很不适合这种情况。这些发现也适用于涉及寄生虫负荷的其他疾病,包括被忽视的热带疾病(NTD),例如血吸虫病。
致编辑 - 我们对Groger及其同事对Gabon中卵质复发的前瞻性研究进行了阅读[1]。鉴于非洲疟疾在非洲的促销活动的增加以及催眠症诱导的复发在这一趋势中的潜在作用,他们的工作是及时的。尽管恶性疟原虫的传播下降,但分子表现出现了6倍的山卵孢菌感染的6倍,从2010年到2016年[2],刚果民主共和国的趋势类似,该物种的流行率从0.4%增加到全国损伤的0.4%,在2007年和2013年占2007年和2013年。在桑给巴尔[5]和乌干达[6]中对恶性疟原虫的成功干预措施对非falciparum物种没有相同的影响。显然,ovale正在成为非洲越来越重要的疟疾。Vivax的研究已经告诉我们,表征疟疾复发的流行学对于消除努力至关重要,但具有挑战性。在本文中,作者使用了实时聚合酶链反应(PCR)和Sanger测序来区分卵形P. ovale Curtisi和Wallikeri物种。,他们将同类中的复发定义为在适当药物水平的发作之间至少1个PCR阴性样本后检测到的同源基因型。与P. ovale Curtisi相反,他们没有发现卵片瓦利克里复发。在从非洲返回的旅行者的研究中,这一发现是出乎意料的。什么可以解释差异?从疟原虫研究中学到的教训可能解释了这种不和谐。在整个研究中,卵子壁式瓦利克里(P. ovale Wallikeri) - 被感染的旅行者在返回非流行区域后比患有卵虫curtisi的那些分别在1和3个月的阶段(表1)。首先,尽管Groger等人的保守性复发率增加了信心
疟疾仍然是一项重大的公共卫生挑战,需要准确的预分辨率模型,以告知塞拉利昂的有效干预策略。本研究比较了Holt-Winters的指数平滑,谐波和人工神经网络(ANN)模型的性能,该数据使用2018年1月至2023年12月的数据进行了比较,并结合了塞拉利昂健康管理信息系统(HMIS)的历史案例记录,以及包括湿度,沉淀和温度的气象学变量。ANN模型表现出卓越的性能,在包括气候变量之前达到了4.74%的平均绝对百分比误差(MAPE)。随着气候变量的包含,这将进一步降低至3.9%,它超过了传统模型,例如Holt-Winners and Harmonic,分别产生了22.53%和17.90%的MAPES。ANN的成功归因于其在数据中捕获复杂的,非线性关系的能力,当时与相关的气候变量增强时特别是。使用优化的ANN模型,我们预测了接下来24个月的疟疾病例,预测从2024年1月到2025年12月的稳定增加,季节性峰值。这项研究强调了在流行病学建模中的机器学习方法,特别是ANNS的潜力,并突出了将环境因素整合到疟疾预测模型中的重要性,推荐ANN模型,以告知更有针对性,有效的疟疾控制策略以改善Sierra Leone和Sirra和Sim-sim-erilra-cil-ial-cil-ial-ial-ial-ial-ial-ial-ial-ial-cor-ial-for。关键字
定义TR1细胞的免疫系统已经发展出一种调节免疫功能的机制,并确保炎症反应不会升级远远超出对宿主受益的升高。I型调节t(TR1)细胞(CD4 + T细胞的子集)被认为是通过抑制髓样细胞和其他T细胞的炎症程序来促进免疫反应的重要作用(1)。tr1细胞被构成了T细胞的调节子集,但与常规Treg不同,因为它们不会组成性地表达FOXP3(1)。TR1细胞已与多种临床相关疾病的结果有关。在接受造血干细胞移植并表现出同种异体移植的SCID患者中,他们发现它们相对较为焦点(2)。这些TR1细胞主要是供体的起源和缓解的移植物 - 主宿主(GVHD),通过诱导抗原特异性
在抗击 #malaria 的进程停滞了 10 年之后,我们现在有三个强有力的理由相信我们能够取得进展:第一代 #疫苗、扩大化疗和新型杀虫剂。这些工具结合起来可以改变疟疾预防并挽救生命。#WorldMosquitoDay
AACVS 非洲疫苗安全咨询委员会 Anti-CS 抗环子孢子抗体 ACTs 青蒿素联合疗法 AE 不良事件 AEFI 免疫接种后不良事件 AESI 特别关注的不良事件 ATP 根据协议 AVPU 警报、声音、疼痛、无反应 CDC 疾病控制和预防中心 CHMI 受控人类疟疾感染 CRF 病例报告表 CSF 脑脊液 CSP 环子孢子蛋白 DALY 伤残调整生命年 DHS 人口与健康调查 DSMB 数据和安全监测委员会 DSS 人口监测系统 DTP 白喉、破伤风、百日咳 DTP3 第三剂 DTP 疫苗 EMA 欧洲药品管理局 EPI 扩大免疫规划 FIC 完全免疫的儿童 GACVS 全球疫苗安全咨询委员会 GCS 格拉斯哥昏迷量表 GDP 国内生产总值 GMT 几何平均滴度 GSK葛兰素史克 GTS 全球技术战略 HBHI 高负担到高影响 HepB 乙型肝炎 HHS 家庭调查 Hib 乙型流感嗜血杆菌 HIV 人类免疫缺陷病毒 HUS 卫生利用研究 ICER 增量成本效益比 IEC 信息、教育和交流 IPTi 婴儿疟疾间歇性预防治疗 IPTp 妊娠期疟疾间歇性预防治疗 IRS 室内滞留喷洒 ITN 杀虫剂处理蚊帐 JTEG 联合技术专家组 KEMRI 肯尼亚医学研究所 LLIN 长效杀虫蚊帐 LSHTM 伦敦卫生与热带医学院 LP 腰椎穿刺 MCV1 首剂含麻疹病毒的疫苗