在许多大脑区域中,神经种群活动似乎被限制为具有相当高维的神经状态空间内的低维歧管。对主要运动皮层(M1)的最新研究表明,低维歧管内的活性,而不是单个神经元的活性,是计划和执行运动所需的计算基础。迄今为止,这些研究仅限于在约束的实验室环境中获得的数据,在这些实验室环境中,猴子执行了重复,定型的任务。一个空旷的问题是,观察到的神经流形的低维度是否归因于这些限制。在执行更自然和不受约束的动作(如步行和采摘食物)期间,M1活动的维度仍然未知。现在,我们发现与各种不受限制的自然行为相关的低维流形,其维度仅略高于与受约束实验室行为相关的尺寸。为了量化这些低维流形带有任务相关信息的程度,我们构建了特定于任务的线性解码器,这些解码器可预测M1歧管活动的EMG活动。在这两种设置中,基于估计的低维歧管中的活性进行解码性能与基于所有记录神经元的活性的解码性能相同。这些结果在特定于任务的流形和运动行为之间建立了功能联系,并强调说,受约束和不受约束的行为都与低维M1歧管有关。
在这项工作中,我们考虑了发布驻留在黎曼流形上的差分隐私统计摘要的问题。我们提出了拉普拉斯或 K 范数机制的扩展,该机制利用了流形上的固有距离和体积。我们还详细考虑了摘要是驻留在流形上的数据的 Fréchet 平均值的特定情况。我们证明了我们的机制是速率最优的,并且仅取决于流形的维度,而不取决于任何环境空间的维度,同时还展示了忽略流形结构如何降低净化摘要的效用。我们用两个在统计学中特别有趣的例子来说明我们的框架:对称正定矩阵的空间,用于协方差矩阵,以及球面,可用作离散分布建模的空间。
本研究的主要目的是调查经典相空间的凯勒几何如何影响从几何量化获得的量子希尔伯特空间的量子信息方面,反之亦然。我们以一种特殊的方式用量子线束将状态与两个积分凯勒流形乘积的子集关联起来。我们证明了当子集是乘积的有限并集时,以这种方式关联的状态是可分离的。我们给出了希尔伯特空间 H 0 ( M 1 , L ⊗ N 1 ) ⊗ H 0 ( M 2 , L ⊗ N 2 ) 上所有纯态平均熵的渐近结果,其中 H 0 ( M j , L ⊗ N j ) 是紧致复流形 M j 上厄米充足线束 L j 的 N 次张量幂的全纯截面空间。这个渐近表达式的系数捕捉了流形的某些拓扑和几何性质。在另一个与量子计算相关的项目中,我们为群 U 3 n ( Z [ 1
所考虑的流形由标准形式的 σ 有限冯·诺依曼代数上的忠实正常状态组成。讨论了切平面和近似切平面。假设给出一个相对熵/散度函数。它用于推广连接一个状态到另一个状态的指数弧的概念。指数弧的生成器被证明是唯一的,直到加法常数。在荒木相对熵的情况下,冯·诺依曼代数的每个自伴元素都会生成一个指数弧。组合指数弧的生成器被证明是相加的。从荒木相对熵得出的度量被证明可以重现久保-森度量。后者是线性响应理论中使用的度量。e 和 m 连接描述了一对对偶几何。任何有限数量的线性独立生成器都会确定一个状态子流形,该子流形通过指数弧与给定的参考状态相连。这样的子流形是对偶平面统计流形的量子概括。
高维脑电图 (EEG) 协方差矩阵的维数降低对于在脑机接口 (BCI) 中有效利用黎曼几何至关重要。在本文中,我们提出了一种新的基于相似性的分类方法,该方法依赖于 EEG 协方差矩阵的维数降低。传统上,通过将原始高维空间投影到一个低维空间来降低其维数,并且仅基于单个空间学习相似性。相反,我们的方法,多子空间 Mdm 估计 (MUSUME),通过解决所提出的优化问题获得多个可增强类可分性的低维空间,然后在每个低维空间中学习相似性。这种多重投影方法鼓励找到对相似性学习更有用的空间。使用高维 EEG 数据集(128 通道)进行的实验评估证实,MUSUME 在分类方面表现出显著的改进(p < 0.001),并且显示出超越仅依赖一个子空间表示的现有方法的潜力。
不变流形的直接参数化方法是一种模型订购降低技术,可以应用于PDES所描述的非线性系统和离散化的非线性系统,例如具有有限元过程,以得出有效的还原级模型(ROM)。在非线性振动中,它已经应用于自主和非自治问题,以提出可以使用几何非线性计算结构的主链和频率响应曲线的ROM。虽然先前的发展使用一阶扩展来应对非自主术语,但通过提出不同的处理,此假设在这里放松了这个假设。关键思想是通过与强迫相关的其他条目扩大参数坐标的尺寸。通过这种启动假设得出了一种新的算法,并且作为关键的结果,可以得出可以得出通过同源方程式出现的共振关系,涉及强迫频率的多次出现,表明有了这一新的开发,可以得出具有超旋转共振的系统的ROM,可以得出。该方法已在涉及梁和拱门的学术测试案例上实施和验证。在数值上证明,该方法为涉及3:1和2:1超谐音共振的问题生成有效的ROM,以及对于系统上一阶截断的系统的融合结果,在非自治术语上显示出明显的限制。
[1] R. J. Elliot,L。Aggoun和J.B. Moore。 隐藏的马尔可夫模型:估计和控制。 Springer Science+商业媒体,1995年。 [2] O. Capp´e,E。Moulines和T. Ryd´en。 在隐藏的马尔可夫模型中推断。 Springer Science+商业媒体,2005年。 [3] L. R. Rabiner。 关于隐藏的马尔可夫模型和语音识别中选定应用的教程。 (在语音识别中的读数中)。 Morgan Kaufmann Publishers,Inc,1990。 [4] R. Durbin,S。Eddy,A。Krogh和G. Mitchison。 生物序列分析。 剑桥大学出版社,1998年。 [5] S. Z,li。 图像分析中的马尔可夫随机字段建模。 Springer Publishing Company,2009年。 [6] A. Zare,M。Jovanovic和T. Georgiou。 湍流的颜色。 流体力学杂志,812:630–680,2017。 [7] B. Jeuris和R. Vandebril。 带有toeplitz结构块的块toeplitz矩阵的khler平均值。 SIAM关于矩阵分析和应用的杂志,37:1151–1175,2016。 [8] A. Barachant,S。Bonnet,M。Congedo和C. Jutten。 通过Riemannian几何形状进行多类脑部计算机界面分类。 IEEE生物培训工程交易,59:920–928,2012。 [9] O. Tuzel,F。Porikli和P. Meer。 通过分类的人行人进行探测。 IEEE关于模式分析和机器智能的交易,30:1713–1727,2008。 [10] S. Said,H。Hajri,L。Bombrun和B. C. Ve-Muri。 熵,2016年18月18日。B. Moore。隐藏的马尔可夫模型:估计和控制。Springer Science+商业媒体,1995年。[2] O. Capp´e,E。Moulines和T. Ryd´en。在隐藏的马尔可夫模型中推断。Springer Science+商业媒体,2005年。[3] L. R. Rabiner。关于隐藏的马尔可夫模型和语音识别中选定应用的教程。(在语音识别中的读数中)。Morgan Kaufmann Publishers,Inc,1990。[4] R. Durbin,S。Eddy,A。Krogh和G. Mitchison。生物序列分析。剑桥大学出版社,1998年。[5] S. Z,li。图像分析中的马尔可夫随机字段建模。Springer Publishing Company,2009年。[6] A. Zare,M。Jovanovic和T. Georgiou。湍流的颜色。流体力学杂志,812:630–680,2017。[7] B. Jeuris和R. Vandebril。带有toeplitz结构块的块toeplitz矩阵的khler平均值。SIAM关于矩阵分析和应用的杂志,37:1151–1175,2016。[8] A. Barachant,S。Bonnet,M。Congedo和C. Jutten。通过Riemannian几何形状进行多类脑部计算机界面分类。IEEE生物培训工程交易,59:920–928,2012。[9] O. Tuzel,F。Porikli和P. Meer。通过分类的人行人进行探测。IEEE关于模式分析和机器智能的交易,30:1713–1727,2008。[10] S. Said,H。Hajri,L。Bombrun和B. C. Ve-Muri。熵,2016年18月18日。Riemannian对称空间上的高斯分布:结构化协方差矩阵的统计学习。信息理论交易,64:752–772,2018。[11] E. Chevallier,T。Hose,F。Barbaresco和J. Angulo。对Siegel空间的内核密度估计,并应用于雷达处理。[12] A. Banerjee,I。Dhillon,J。Ghosh和S. Sra。使用Von Mises-Fisher分布在单位过度上进行促进。机器学习研究杂志,6:1345–1382,2005。
虽然实验神经科学中大多数经典的功能研究都集中在单个神经元的编码特性上,但随着记录技术的最新发展,人们越来越重视神经群体的动态。这导致了各种各样用于分析与实验变量相关的群体活动的模型的出现,但直接检验许多神经群体假设需要根据当前神经状态干预系统,这就需要能够在线推断神经状态的模型。现有的方法主要基于动态系统,需要强参数假设,而这些假设在噪声主导的环境中很容易被违反,而且不能很好地扩展到现代实验中的数千个数据通道。为了解决这个问题,我们提出了一种方法,将快速、稳定的维数降低与所得神经流形的软平铺相结合,从而可以将动态近似为平铺之间的概率流。该方法可以使用在线期望最大化进行有效拟合,可扩展到数万个图块,并且在动态以噪声为主或具有多模态转换概率时优于现有方法。生成的模型可以以千赫兹的数据速率进行训练,在几分钟内产生神经动态的精确近似值,并在亚毫秒时间尺度上生成预测。它在未来的许多时间步骤中保持预测性能,并且速度足够快,可以作为闭环因果实验的组成部分。
我们考虑了由歧管的路径空间,该路径空间是由随机流动引起的,其无限发电机是低纤维化的,但不是椭圆形的。这些发电机可以看作是具有选择补体的亚riemannian结构的亚拉普拉斯人。我们以梯度运算符在L 2中的方式介绍了路径空间上圆柱功能的梯度概念。有了该结构,我们表明,水平RICCI曲率的结合相当于路径空间上功能的几种不等式,例如梯度不等式,Log-Sobolev不平等和POINCARé不平等。因此,我们还获得了Ornstein -Uhlenbeck操作员光谱间隙的结合。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。