摘要 - 本文介绍了与空中操纵器合作的硬件模拟器。模拟器为用户提供了适用于人冲水器交互活动的逼真的触觉反馈。测量硬件界面和Human/环境之间交换的力,并提供给动态模拟的空中操纵器。反过来,模拟的空中平台将其位置反馈到硬件,从而使人类能够感觉到并评估相互作用的效果。除了人冲洗操作器的合作外,模拟器还提供了发展和测试空中操纵中的自主控制策略。因此,对拟议系统的有效性以及两个案例研究进行了评估:一个协作任务,其中人类操作员将工具附加到机器人最终效用器和一个自动鸟分流器的安装任务。
本文介绍了具有不同自治水平的移动操纵器中当前研究状态的迷你审查,强调了它们相关的挑战和应用环境。在不同环境中需要移动操纵器,尤其是危险的操纵器,例如退役,搜救和救援,这是由于各种挑战和风险所面临的独特挑战和风险。在这些环境中部署的许多系统不是完全自主的,需要人类机器人的团队来确保在不确定性下安全可靠的操作。通过此分析,我们确定了有关可变自主权的文献中的差距和挑战,包括认知工作量和沟通延迟,并提出未来的方向,包括用于移动操纵者的全身自治,虚拟现实框架,大型语言模型,以减少操作员在某些挑战性和不确定方案中的复杂性和认知负载。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
子宫切除术是对子宫良性疾病的女性进行的最常见的外科手术,约占子宫切除术的90%(1)。在手术机器人之前,腹腔镜检查是唯一受到陡峭的学习曲线和对高级训练的需求的唯一最低侵入性选择。由于美国食品药品监督管理局于2005年批准了DA Vinci机器人(直觉手术),因此机器人技术的进步大大增加了其在妇科手术中的使用。目前,机器人简单子宫切除术(RSH)现在是美国最常见的机器人妇科手术(2,3)。与剖腹手术或腹腔镜检查相比,机器人手术的最大优势是人力资源的节省。RSH的设备每次手术的设备比总腹腔镜子宫切除术(TLH)稍贵,但是执行45个或更多的RSH程序比TLH更具成本效率(4,5)。使用子宫操纵剂的使用已经很好地确定,很明显,子宫操纵剂是手术期间最简单处理子宫的方法(6)。据报道, TLH没有子宫操纵器可减少手术时间和骨盆助手的需求(7)。 但是,很少有研究检查RSH是否需要操纵器。 在这项研究中,我们的目的是回顾性地比较有或没有操纵器的RSH案例,并确定术中使用操作剂的预测因素。TLH没有子宫操纵器可减少手术时间和骨盆助手的需求(7)。但是,很少有研究检查RSH是否需要操纵器。在这项研究中,我们的目的是回顾性地比较有或没有操纵器的RSH案例,并确定术中使用操作剂的预测因素。
摘要。本文描述了农业机器人,机器人操纵器的类型以及测量其旋转机制时出现的挑战。出现其出现的原因,在此过程中发生的物理和技术现象。分析了其测量所需的不同操作模式的测量换能器,并提出了这些传感器的主要要求。此外,本文提出了传感器,用于控制节能,智能机器人的旋转部分,用于采摘西红柿。这项研究的主要目标之一是衡量和控制用于农业中用于开发现代农业,节省能源和收获优质产品的农业的旋转部分的变化。这项研究的新颖性是机器人操纵器的旋转部分受到产品类型及其大小的控制。
摘要。开发能够代替人类执行智力劳动的浇水自主移动机器人是机器人和生物信息学领域的一项紧迫任务。这些机器人可广泛应用于精准农业以节约资源,特别是在最佳植物灌溉领域。在全球城市化的背景下,本研究致力于开发用于微型温室的浇水自主移动机器人。该机器人集成了微电子和微自动化系统。创建了一个配备机械手和计算机视觉系统的原型机器人。开发的灌溉计划和种植方法可以高效利用资源,提高作物产量并降低劳动力成本。这种方法对城市农业具有重要的实用价值。
近年来,随着机器人技术的发展,医疗保健行业一直在取得显着进步[1],[2]。由于Covid-19引起的大流行,使用机器人技术的医疗程序的自动化变得至关重要[3],[4]。机器人正在逐步用于包括手术[5],康复[6],诊断[7]和药物输送[8]在内的广泛任务[8],提供精度,效率和远程操作能力[9]。现代机器人技术具有使用机器人操纵器[10]进行医学检查程序的巨大潜力[10],这些机器人使用各种末端效应子在特定任务中提供其他功能。如今,机器人臂成为医学研究小组的主要重点[11]。 机器人操纵器具有轻巧的重新配置手臂设计,高精度执行器和运动控制系统。 这些机器人用于需要高度精确和质量的任务性能的医学场景,例如组织缝合[12],微创手术[13],[14]和超声检查[15]。如今,机器人臂成为医学研究小组的主要重点[11]。机器人操纵器具有轻巧的重新配置手臂设计,高精度执行器和运动控制系统。这些机器人用于需要高度精确和质量的任务性能的医学场景,例如组织缝合[12],微创手术[13],[14]和超声检查[15]。
本文提出了一种用于空中操纵器的控制方案,该方案允许解决不同的运动问题:最终效应器位置控制,最终效应器轨迹跟踪控制和路径遵循控制。该方案具有两个级联的控制器:i)第一个控制器是基于数值方法的最小范数控制器,它仅通过修改控制器引用就可以解决三个运动控制问题。另外,由于空中操纵器机器人是一个冗余系统,即,完成任务具有额外的自由度,可以按层次顺序设置其他控制目标。作为控制的次要目标,提议在任务过程中维持机器人臂的所需配置。ii)第二个级联控制器旨在补偿系统的动力学,其中主要目的是将速度误差驱动到零。提出了机器人系统的耦合动态模型(己谐和机器人臂)。该模型通常是根据力和扭矩的函数开发的。但是,在这项工作中,它是参考速度的函数,这些速度通常是这些车辆的参考。通过相应的稳定性和鲁棒性分析给出了提出的对照算法。最后,为了验证控制方案,在部分结构化的环境中进行实验测试,其空中操纵器与空中平台和3DOF机器人臂相符。
摘要 - 心脏脑血管疾病是一种重要的疾病,可以直接威胁生命和健康。血管干预手术目前是主流治疗方法。这种手术要求医生长时间暴露于辐射,并受到广泛的身体损害。回应,国内外研究人员开始开发血管内干预手术机器人。尽管机器人具有特定的其他功能,但仍处于研发阶段。它必须不断提高性能,可靠性和功能,然后才能用于介入手术。因此,为了进一步降低医生的学习和培训成本,优化手术的操作步骤并提高了交付准确性,我们开发了一种基于多个隔离器协作的基于送达设备的内血管内干预机器人。第三方类型测试证实了机器人的可行性和整体性能满足手术的需求(平均线性精度小于0.1 mm)。体内实验证明了对医生的辐射暴露的功效,安全性和降低(接近98.68%)。
摘要本文解决了轨道机器人机器人的服务和组装中的重要挑战,这是为了克服机器人关节上的力量/扭矩的饱和挫折,并在捕获后阶段中,同时与未控制的大型Angular和线性动力进行了目标飞船,同时控制目标航天器。作者提出了一种基于两个鲁棒和效果控制算法的新颖解决方案:最佳控制分配(OCA)和非线性模型预测性控制(NMPC)。这两种算法都旨在最大程度地减少关节扭矩,航天器执行器矩,接触力和复合冗余系统的矩,其中包括通过双n-数度空间机器人机器人操纵器抓住的常见有效载荷(目标航天器)安装在Chaser spacececraft上。OCA算法仅使用当前状态和系统动力学小型量化二次成本函数,但NMPC还考虑了未来状态估计值和对指定预测范围的控制输入。它在计算上更多地参与,但在减少关节扭矩方面提供了优异的结果。迄今为止,将MPC应用于机器人技术的文献主要集中在线性模型上,但双臂配位是高度非线性的,并且在双臂协调中没有MPC应用。提出的离散技术(非线性模型)具有优雅和简单性的确切实现(非线性模型),但仍考虑了双臂协调系统的完整非线性模型。它在计算上非常有效。计算机仿真结果表明,所提出的算法有效地工作,最小扭矩,接触力和矩实现。开发的算法在跟踪问题方面也非常有效。