摘要:双人操作对于它在与环境交互时为机器人提供增加功能的潜力以及扩大可用的操作动作的数量而有价值。但是,要使机器人执行双字操作,系统必须具有一个强大的控制框架,以对每个子系统进行定位和生成轨迹和命令,以允许成功进行合作操作以及对每个单个子系统的足够控制。提出的方法建议使用多个通过使用光学跟踪定位方法充当单个双层操作系统的多个移动操纵器平台。框架的性能取决于本地化的准确性。由于命令主要是高级的,因此可以在此框架内使用移动操纵器和固定操纵器的任何数字和组合。我们使用两个不同的全向移动操纵器在Pybullet仿真环境中进行测试来证明该系统的功能,以及使用两个四倍体操纵器的真实实验。
摘要 - Koopman操作员理论提供了严格的动力学处理,并已成为一种强大的建模和基于学习的控制方法,从而实现了在机器人技术各个领域的重要进步。由于其能够代表非线性动力学作为线性操作员,Koopman理论提供了一种新鲜的镜头,可以通过它来理解和应对复杂机器人系统的建模和控制。此外,它可以启用增量更新,并且在计算上是廉价的,使其对实时应用程序和在线积极学习特别有吸引力。本评论全面介绍了有关跨机器人技术领域的Koopman操作员理论的最新研究结果,包括空中,腿部,轮子,水下,软体和操纵器机器人技术。更重要的是,它提供了实用的教程,以帮助新用户开始,并提供更高级的主题的论文,从而导致对未来的方向和开放研究问题的前景。综上所述,这些提供了对Koopman理论的潜在演变的见解,该理论应用于机器人技术领域。
随着我们转向日益复杂的网络物理系统(CPS),需要采用新的方法来实时计划有效的状态轨迹。在本文中,我们提出了一种方法,可以显着降低解决具有非线性动力学的CP的最佳控制问题的复杂性。我们利用差异平坦度的属性来简化优化过程中出现的Euler – lagrange方程,而这种简化消除了通常会遇到最佳控制的数值不稳定性。我们还提出了一个显式微分方程,该方程描述了最佳状态轨迹的演变,并扩展了结果以考虑不受约束和受约束的情况。此外,我们通过为带有两个Revolute关节的平面操纵器生成最佳轨迹来证明方法的性能。我们在模拟中表明,我们的方法能够在4中生成受约束的最佳轨迹。5 ms尊重工作空间约束并在肘关节中的“左”弯曲和“右”弯曲之间切换。©2023 Elsevier Ltd.保留所有权利。
自动化的兴起为实现制造过程的效率提供了更高的效率,但它经常损害迅速响应不断发展的市场需求并满足自定义需求所需的灵活性。人机合作试图通过将机器的力量和精度与人类创造力和感知理解相结合,以应对这些挑战。在本文中,我们概念化并提出了一个基于机器学习的机械手机的实施框架,该框架结合了人类的原则和杠杆范围,以促进现实(XR),以促进Humans和机器人之间的直观沟通和编程。此外,概念框架可以直接参与机器人学习过程中的人类参与,从而导致更高的适应性和任务概括。本文强调了可以实现拟议框架的关键技术,并强调了开发整个数字生态系统的重要性。此外,我们回顾了XR在人类机器人协作中的现有实施方法,展示了各种观点和方法。讨论了挑战和未来的前景,并深入研究了XR的主要障碍和潜在的研究途径,以实现更自然的人类机器人互动和工业景观中的整合。
1 系统描述 1.1 标准 WAM * 系统组件 1.1.1 系统功能 感谢您选择全臂机械手 (WAM)。WAM 旨在克服传统机械臂缺乏反向驱动能力的问题,同时保持耐用性、低功耗、轻移动重量和易用性。标准 WAM 是四自由度 (4- DOF) 臂。可选 WAM 腕部增加了三个自由度 - 请参阅第 1.2.1 节。WAM 灵活纤细,可轻松绕过路径上的障碍物,并具有流畅而精确的关节运动,这有助于 WAM 在机器人控制研究和新兴应用中的普及。紧凑、系统重量轻和极低功耗使 WAM 臂具有独特的便携性,因此是移动平台的理想选择。其重量轻且没有控制器柜,因此比同等尺寸的机械臂更容易安装。 WAM 还可以直接由移动平台上的小型电池供电,无需电源调节,电池可承受各种电压。虽然没有机械臂被认为是“安全的”,并且应根据每个应用的需求采取所有预防措施,但 WAM 的反向驱动能力和多层安全系统使其成为最安全的机械臂之一。由于其 95% 的反向驱动电缆驱动器(与反向驱动能力较差的齿轮和谐波驱动器相反),WAM 在接触墙壁和人时可以自然而轻柔地做出反应。这些属性使 WAM 成为手术和康复领域首批机械臂之一。我们希望您喜欢 WAM 的多功能性和实用性。请随时提供反馈并在需要时寻求建议。美国 +617-252-9000,support@barrett.com ,或 http://www.barrett.com/。 1.1.2 文档 WAM 附带六个独立的文档: 1. 用户手册(本手册) 2. 快速入门指南 3. WAM 电缆维护指南 4. 腕电缆维护指南 5. 惯性规格手册 6. 支持参考表 1. 用户手册(本手册)涵盖: • 系统组件和选项 • 安全说明 • 系统设置和操作 • 故障排除 • 技术规格 • 常见问题 2. 快速入门指南是一份单页指南,涵盖操作 WAM 的基本知识以及 WAM 的一些基本演示。其中包括打开和初始化 WAM、原点位置、故障恢复以及重力补偿和教学和播放演示。 *“Whole Arm Manipulator”和“WAM”是 Barrett Technology® Inc. 的商标。
spirobs:对数螺旋形机器人,用于遍及尺度的多功能抓握Zhanchi Wang,1 Nikolaos M. Freris,1,3, *和XI Wei 2,** 1计算机科学技术学院,中国科学技术大学,中国,Hefei,Anhui,Anhui,Prc,Prc,230026。2中国科学技术大学化学与材料科学学院,Hefei,Anhui,Prc,230026 3 Lead Contact *通信:nfr@ustc.edu.cn。 **通信:wxi@ustc.edu.cn。 总结实现具有生物学上可比灵活性和多功能性的软操作器通常需要仔细选择材料和驱动以及其结构,感知和控制的细心设计。 在这里,我们报告了一类新的软机器人(螺纹),该机器人在形态上复制了在自然附属物中观察到的对数螺旋模式(例如,章鱼臂,大象躯干等)。 这允许在不同尺度和快速廉价的制造过程中建立共同的设计原理。 我们进一步提出了一个受章鱼启发的抓斗策略,可以自动适应目标对象的大小和形状。 我们说明了螺旋罗的敏捷性,以及抓紧大小的物体的能力,其大小多于两个以上的数量级,并且自重的260倍。 我们通过另外三种变体演示可伸缩性:微型抓手(MM),一个长时间的操纵器和一系列可以纠结各种物体的螺旋体。 这些附件能够具有显着的运动复杂性,并提供各种重要功能,例如猎物捕获,运动,操纵和防御。2中国科学技术大学化学与材料科学学院,Hefei,Anhui,Prc,230026 3 Lead Contact *通信:nfr@ustc.edu.cn。**通信:wxi@ustc.edu.cn。总结实现具有生物学上可比灵活性和多功能性的软操作器通常需要仔细选择材料和驱动以及其结构,感知和控制的细心设计。在这里,我们报告了一类新的软机器人(螺纹),该机器人在形态上复制了在自然附属物中观察到的对数螺旋模式(例如,章鱼臂,大象躯干等)。这允许在不同尺度和快速廉价的制造过程中建立共同的设计原理。我们进一步提出了一个受章鱼启发的抓斗策略,可以自动适应目标对象的大小和形状。我们说明了螺旋罗的敏捷性,以及抓紧大小的物体的能力,其大小多于两个以上的数量级,并且自重的260倍。我们通过另外三种变体演示可伸缩性:微型抓手(MM),一个长时间的操纵器和一系列可以纠结各种物体的螺旋体。这些附件能够具有显着的运动复杂性,并提供各种重要功能,例如猎物捕获,运动,操纵和防御。关键字柔软的机器人,对数螺旋,多尺度设计,软机器人握把介绍某些动物具有细长,灵活的附属物,范围从海马长度的几厘米和Chameleons的前尾尾巴1,2到超过一米的章鱼臂和大量的off臂和大头臂和大头脑trunks trunk trunks trunks 3,4。通过利用软材料或合规机制5-7,这是设计和构建柔软连续操作器的灵感来源。尽管机器人已经成功地重现了此类机器人系统中的柔性变形,并且在处理脆弱或不规则形状的物体8,安全的人类机器人互动任务9-11,医疗应用12,13等方面表现出了巨大潜力,但生物学示例在脱氧和敏捷性方面仍然超过了特大工程。例如,大象树干可以包裹直径为3厘米的胡萝卜,而它也可以抓住和堆叠300千克的树桩,直径超过直径14。章鱼手臂可以伸出手,并在次秒时间尺度上捕获鱼。
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
摘要 - 操纵看不见的对象在没有3D表示的情况下具有挑战性,因为对象通常具有遮挡的表面。这需要与对象的物理互动以构建其内部表示形式。本文提出了一种方法,该方法使机器人能够快速学习给定对象的完整3D模型,以在不熟悉的方向上进行操作。我们使用部分构造的NERF模型的集合来量化模型不确定性,以通过优化信息性和可行性来确定下一个动作(视觉或重新定位动作)。此外,我们的方法决定了何时以及如何掌握和重新定位对象的部分NERF模型,并重新估计对象姿势以纠正交互期间引入的未对准。在带有基准对象的桌面环境中运行的模拟Franka Emika机器人操作器进行的实验表明,视觉重建质量(PSNR)的14%,(ii)20%的几何/深度/深度重建对象表面(f-得分)和(iii)71%在(iii)71%的成功对象率是一定的,该任务范围是A的任务范围,即一定的一定范围。场景中的配置;超过当前方法。其他详细信息显示在以下网址:https://actnerf.github.io/。
摘要 — 刚度变化和实时位置反馈对于任何机器人系统都至关重要,但最重要的是对于有源和可穿戴设备与用户和环境的交互。目前,对于紧凑尺寸,缺乏提供高保真反馈并保持设计和功能完整性的解决方案。在这项工作中,我们提出了一种新型最小离合器,它集成了刚度变化和实时位置反馈,其性能优于传统的卡住解决方案。我们详细介绍了离合器的集成设计、建模和验证。初步实验结果表明,在最大力密度为 15.64 N/cm 2 时,离合器的阻抗力变化接近 24 倍。我们通过实验验证了离合器在以下方面的表现:(1) 增强软执行器的弯曲刚度,使软操作器的夹持力提高 73%;(2) 使软圆柱执行器能够执行全向运动;(3) 为手势检测提供实时位置反馈,为动觉触觉反馈提供阻抗力。本文介绍了功能组件,重点介绍了集成设计方法,这将对软机器人和可穿戴设备的发展产生影响。
摘要 - 尽管垃圾箱是机器人操纵的关键基准任务,但社区主要集中于将刚性直线物体放置在容器中。我们通过呈现一只软机器人手,结合视力,基于运动的本体感受和软触觉传感器来识别,排序和包装未知物体的流。这种多模式传感方法使我们的软机器人操纵器能够估计物体的大小和刚度,从而使我们能够将“包装好容器”的不定定义的人类概念转化为可实现的指标。我们通过逼真的杂货包装场景证明了这种软机器人系统的有效性,其中任意形状,大小和刚度的物体向下移动传送带,必须智能地放置以避免粉碎精致的物体。将触觉和本体感受反馈与外部视力结合起来,与无传感器基线(少9倍)和仅视觉的基线相比,项目受损的填料操作显着降低(4。少5×)技术,成功地证明了软机器人系统中多种感应方式的整合如何解决复杂的操作应用。