强化学习已被证明对人形机器人的运动有效,但是在复杂环境中实现稳定的运动仍然具有挑战性。humanoid机器人必须在导航并不断适应与环境的相互作用时保持平衡。对这些机器人环境动力学的深入了解对于实现稳定的运动至关重要。由于有特权信息,即机器人无法直接访问,以扩展可用的空间,因此先前基于强化的学习方法是从部分观察结果中重建环境信息,或者从部分观察中重建机器人染色信息,但它们从完全捕获的机器人环境相互作用的动力学中却缺乏。在这项工作中,我们提出了一个基于HU Manoid Robots(HUWO)的物理互动模型的端到端增强学习控制框架。我们的主要创新是引入物理互动世界模型,以了解机器人与环境之间的动态影响。另外,为了解决这些相互作用的时间和动态性质,我们采用了变压器-XL的隐藏层进行隐式建模。所提出的框架可以在复杂的环境(例如斜坡,楼梯和不连续的表面)中展示强大而灵活的运动能力。,我们使用Zerith 1机器人(在模拟和现实世界部署中)验证了该方法的鲁棒性,并将我们的Huwo与基线与基线进行了定量比较,并具有更好的穿越性和命令跟踪。
- 眼机擅长看到和监督。他们可以飞行或粘在天花板上,使他们能够快速探索该区域并找到目标或有趣的物体。- 手机旨在拾起并移动位于墙壁,架子或桌子上的东西。他们可以使用绳索连接到天花板,从而爬上墙壁和障碍物。- 脚步机器人是带轮机器人,它们用来与其他脚步机器,携带手机或运输物体相连。本文还提到,脾脏的项目将移动群机器人技术的元素与HU manoid Robotics相结合,并且每种机器人类型的专业化是实现人形群的关键部分。此外,该论文说,它将在以下各节中介绍这些机器人的硬件功能,并提及模拟环境的开发,以使其更易于测试和原型机器人行为。
摘要机器人可能会在我们未来成为重要的社会参与者,因此需要更类似人类的方式来帮助我们。我们指出,Humans和机器人之间的合作是通过两种认知技能来培养的:意图阅读和信任。拥有这些能力的代理人将能够推断他人的非语言意识,并评估他们实现目标的可能性,共同了解他们需要哪种类型和合作程度。出于这个原因,我们提出了一种发展性人工认知体系结构,该建筑构建了无监督的机器学习和概率模型,以使Humanoid Robot与意图阅读和信任能力相同。我们的实验结果表明,这些认知能力的协同实施使机器人能够以有意义的方式进行合作,并以正确的读取模型来实现正确的目标预测,并通过信任组成部分增强了对任务的积极成果的同样。
舞蹈机器人领域吸引了众多领域的关注。例如,索尼推出了一款名为 QRIO 的人形机器人(Geppert 2004),它可以通过模仿人类的舞蹈以高度协调的方式与多个单元一起跳舞。Nakaoka 等人探索了一种动作捕捉系统来教机器人 HRP-2 跳日本传统民间舞蹈(Nakaoka 等人 2005)。尽管之前的系统取得了成功,但它们通常要么局限于一组预先定义的动作(伴随着音乐),要么根据外部刺激表现出很小的变化。为了提高舞蹈的变化性,Bi 等人提出让有腿的机器人以多样化的方式与音乐同步跳舞(Bi 等人 2018)。他们根据音乐的节拍从舞蹈动作库中挑选动作,创作了一种舞蹈编排。舞蹈动作包括各种踏步和基本动作。从库中挑选动作的过程由马尔可夫链定义,它取决于先前挑选的舞蹈动作和当前音乐节奏。在那些基于概率图模型的方法中,由于概率模型在表示舞蹈动作之间的逻辑关系方面的局限性,通常会选择与先前动作不合理的动作。在本演示中,我们设计了一个名为 Plan2Dance 的系统,以基于音乐创作舞蹈编排。通过考虑动作的时间要求,基于基本舞蹈动作的关系构建了一组动作模型(以 PDDL(Fox and Long 2003)语言的形式)。