激光增材制造正在改变多个工业领域,尤其是定向能量沉积工艺。广泛采用这种新兴技术的一个关键挑战是形成不良的微观结构特征,例如孔隙、裂纹和大的外延晶粒。由于工艺的瞬态性质和涉及的参数数量,建立工艺参数与材料特性之间关系的试错法存在问题。在这项工作中,使用定向能量沉积增材制造 IN718 的工艺参数、熔池几何形状和构建质量测量之间的关系,使用神经网络作为广义回归量以统计稳健的方式进行量化。数据是使用原位同步加速器 x 射线成像获取的,为我们的分析提供了独特而准确的测量值。对重复测量变化的分析显示了异方差误差特性,这些特性可以使用原则性的非线性数据转换方法来解释。分析结果表明,表面粗糙度与熔池几何形状相关,而轨道高度与工艺参数直接相关,表明有潜力直接控制效率和层厚度,同时独立地最小化表面粗糙度。
我们报告了使用激光粉末床熔合 (LPBF) 对镍基高温合金金属基复合材料 (Ni-MMC) 进行增材制造 (AM) 的方法。通过高速搅拌机分簇和球磨原样 SiC 纳米线 (2 vol%) 和 Inconel 718 合金粉末来制备含纳米陶瓷的复合粉末,从而在 Inconel 颗粒表面产生均匀的 SiC 装饰。对打印样品的分析表明,SiC 纳米线在激光熔化过程中溶解,导致 Nb 和 Ti 基硅化物和碳化物纳米颗粒的原位形成。这些原位形成的纳米颗粒使 AM Inconel 718 的凝固微观结构更理想,打印缺陷(裂纹和孔隙)更少,晶粒尺寸略有细化。与未添加 SiC 的参考样品相比,打印的 Ni-MMC 的机械特性表明,硬度、屈服强度(增加 16%)和极限拉伸强度(σ UTS ,增加 12%)均显著增加。经过热处理后,与经过相同处理的未增强材料相比,相同的复合材料样品的 σ UTS 高 10%,同时总拉伸伸长率保持约 14%。我们认为,这种原位沉淀物形成为强化增材制造的高温材料提供了一种简单有效的方法,可用于能源和推进应用中日益恶劣的环境。
由于生产率高,增材制造 (AM),尤其是使用激光和金属粉末的定向能量沉积 (DED-LB/M) 对于制造具有集成功能的工具很有吸引力。本研究致力于 DED-LB/M 制造实验性马氏体时效工具钢、使用先进电子显微镜表征构建微观结构以及评估硬度性能。观察到最终构建的高可打印性和低孔隙率,对于使用 600 W 和 800 W 制造的样品,相对密度不低于 99.5%,但构建的微观结构和性能沿高度呈梯度。观察到取决于制造参数的特征硬度分布和微观结构。制造的马氏体时效钢样品的顶层具有马氏体结构,沉淀物可能在凝固过程中形成。因此,顶层在奥氏体化等温线的深度处较软。在内部区域测量到更高的硬度,这是制造材料在逐层制造过程中进行原位热处理的结果。制造过程中的热循环导致内部区域产生沉淀硬化效应。扫描和透射电子显微镜证实,在顶部和内部区域的原始材料中形成了薄膜状和圆形颗粒。然而,仅在内部区域观察到准晶纳米级 R ' 相沉淀物。制造过程中由于原位热处理而沉淀的 R ' 相的形成是内部区域测得的硬度较高 (440 – 450 HV1) 的原因。
关于Find,全球诊断联盟的发现,旨在确保公平地访问全球可靠的诊断。我们将国家和社区,资助者,决策者,医疗保健提供者和开发商连接起来,以刺激诊断创新,并使测试成为可持续,弹性卫生系统不可或缺的一部分。我们是访问COVID-19工具(ACT)加速器诊断支柱的共同收入,以及WHO合作实验室加强和诊断技术评估中心。2003年在瑞士日内瓦成立,我们在肯尼亚,印度,南非和越南设有区域枢纽。与公共和私营部门的合作伙伴一起,我们正在努力确保每个需要测试的人都可以得到一个。有关更多信息,请访问www.finddx.org。背景国际糖尿病联合会的地图集表明,全世界有5.37亿人患有糖尿病,大多数人居住在低收入和中等收入国家(LMICS)1。每个患有1型糖尿病的人(870万人2)和7-15%的2型糖尿病患者都需要胰岛素。对于这些人,每天几次监测血液中的葡萄糖水平对于使他们能够安全使用胰岛素并控制血糖水平至关重要。多个障碍会阻碍常规的葡萄糖自我测试,例如频繁的手指饰面,技术技能和成本4的挑战。连续的葡萄糖监测设备(CGM)改变了糖尿病患者及其医疗保健提供者(HCP)管理糖尿病的能力。白天和晚上的葡萄糖数据连续可用性可以更好地调整治疗和行为,有助于避免低血糖发作,并改善HBA1C和范围内的一般时间。5通过避免或延迟并发症的发作,预计将改善糖尿病患者的长期结局的所有因素6。除了长期连续使用CGM外,这些技术还可以在较短的时间内使用,以使糖尿病及其HCP的人了解不同行为对葡萄糖管理的影响并帮助治疗调整7。在高收入国家,CGM已成为1型糖尿病的护理标准,但是,对于LMIC,该技术的访问仍然非常有限。缺乏可用性的主要原因是价格不足,缺乏本地注册的产品,缺乏第三方付款人的稀缺性以及糖尿病和医疗保健提供者对CGM使用方式如何改善糖尿病管理的人的认识。
满足严格的要求,氢容器的压力阻力是由增强纤维支配的,但是树脂矩阵在提供环境外观保护(热,化学,撞击)以及疲劳/压力循环的耐药性方面起着关键作用。在85°C下进行严重的压力循环测试,GTR 13标准要求,实际上,树脂系统必须具有至少115-120°C的玻璃过渡温度(TG),即使在热/潮湿条件下,也必须避免过早故障。研究表明,在断裂时具有高机械强度和高伸长的树脂系统可以更好地支持压力循环引起的尺寸变化(应变),从而防止在最大额定压力下层压板内的裂纹启动。
本文研究了两种不同的沉积策略(振荡和平行道次)对丝材+电弧增材制造的 Ti-6Al-4V 合金在成品状态下的拉伸和高周疲劳性能的影响。在振荡构建中,等离子炬和送丝器在壁厚方向上连续振荡。相反,在平行道次构建中,沿壁长相同方向连续沉积四个单层。测试样本相对于沉积层以水平和垂直方向制造。与平行道次构建相比,振荡构建由于其较粗的转变微观结构而具有较低的静态强度。然而,伸长率值相似。柱状初生 β 晶粒的存在导致各向异性的伸长率值。载荷轴平行于初生 β 晶粒的垂直样品的伸长率比水平样品高 40%。疲劳强度与其锻造对应物相当,并且高于典型的铸造材料。在 10 7 次循环中,振荡构建垂直样品和平行道次构建在两个方向上的疲劳强度都达到了 600 MPa。只有振荡构建水平样品的疲劳强度较低,为 500 MPa。断口分析表明,大多数样品(约 70%)的裂纹源于孔隙,约 20% 的样品的裂纹源于微观结构特征,其余样品没有失效(在 10 7 次循环时出现跳动)。
高沉积速率定向能量沉积工艺的主要挑战之一是材料沉积过程中产生的残余应力,这常常导致材料变形和性能不佳。适用于航空航天领域 DED 工艺的重要零件系列是薄壁部件,其特点是具有大基底表面积和肋状加强结构。在这里,基板可以设计为最终部件的一部分。基板集成到最终部件中可能会导致变形,这是由于加工过程中的残余应力释放造成的。因此,本文研究了各种基于粉末的激光金属沉积工艺参数和策略对增材制造的 Ti-6Al-4V 部件的残余应力状态以及加工过程中产生的应力释放的影响。分析是在加工过程中进行的,包括基板的在线应变测量。所采用的层去除方法允许基于分析和 FEM 模型确定加工区域特定的应力释放图。因此,计算了零件的初始残余应力状态,结果表明,尽管热处理解决了大部分残余应力,但在热处理零件中,根据处理过程中的零件夹紧情况,也发现了残余应力。此外,研究表明,靠近基材的层中存在显著的残余应力。
图2在AutoStem系统上映射的完整制造过程和平台上的液体流程。(a)沿该设施上不同站点的生产过程步骤的说明,包括I:将细胞播种到生物反应器中; II/III:种植,抽样和收获; IV和V:配方和填充到VI。在80 C冰箱中冻结最终电池产品。(b)生物反应器,媒体水库,废物和A级区域之间的管道组织的例证。为了获得更好的可用性,每行都被分配了不同的颜色。实线:液体;虚线:气体; H1:加热器1; H2:加热器2; BR1:生物反应器1; GCU:气体控制单元,REG:气体调节器; P1-3:蠕动泵1 - 3,V1-8:挤压阀1 - 8。
金柱勋 1 、成俊华 1 、金元中 2 、李建艺 3 、金洪允 1 、文成元 1 、张在赫 4 、金艺瑟 1 、杨英焕 1 、吴东乔 1 、灿雄