图 3:适用于 WAAM 构造的典型路径规划方法:a)均匀切片法与 5 轴打印相结合[16];b)均匀切片(不连续轨迹)与自适应切片法(连续轨迹)[64];c)针对更厚、更复杂几何形状的模块化路径规划[58](这些图片的转载许可已获得
助理教授 Choong Yuen Onn 博士 日期:2022 年 6 月 16 日 联合导师 商务与公共管理系 东姑阿都拉曼大学商务与金融学院
虽然激光可能是微加工系统的核心,但成功的加工过程依赖于机器各个方面的协调配合。需要精心挑选的光学元件和光机械元件来将光束传送到工件上。高精度、顶级的运动控制系统和平台必须与机器视觉协同工作,以精确、可重复地移动工件。此外,集成的机械臂、管式装载机和传送带必须自主工作(或与操作员协同工作),以安全地处理零件,支持大批量生产。
1。产品复杂性指数:生产产品所需的生产知识的多样性和复杂性。PCI值高的产品(最复杂的产品只能生产)包括电子和化学品。PCI值低的产品(几乎所有国家都可以生产的最不复杂的产品)包括原材料和简单的农产品。
制造工程与材料加工理学硕士旨在培养精通制造技术、材料加工和管理的工程师或管理人员。本课程以全日制和非全日制形式提供。课程将在莎阿南玛拉理工大学工程学院机械工程学院进行。全日制课程的最短时间为一年(两个长学期和一个短学期),而非全日制课程的最长时间为 1.5 年。全日制课程的最长时间为 1.5 年,而非全日制课程的最长时间为 2 年。本课程的总学分为 42 学分。评估将通过课程作业、测试和考试进行。学生将完成硕士项目以满足本研究生课程的要求。
在 Andrew Forrest 博士的领导下,FMG 制定了全国领先的脱碳路线图,目标是到 2030 年实现净零运营排放,并制定了世界领先的完整价值链目标,即到 2040 年实现净零排放(范围 1-3)。FMG 已承诺将其税后利润的 10% 通过 Fortescue Future Industries (FFI) 为可再生能源增长提供资金,另外 10% 则用于其他商品的增长机会。Fortescue 的资本配置与公司业绩挂钩,每年为可再生能源提供约 6.2 亿美元的稳定财务基础。到 2030 年,FMG 计划投资 62 亿美元用于引领澳大利亚的脱碳。35
摘要 :增材制造 (AM) 是一项尖端技术,可提供高达 100% 的材料效率和显著的重量减轻,这将对飞机燃料消耗产生积极影响,并且具有很高的设计自由度。因此,许多航空航天公司都在考虑实施 AM,这要归功于这些好处。因此,本研究的目的是帮助航空航天组织在不同的 AM 技术中进行选择。为此,通过半结构化访谈收集了 (8) 位 AM 领域专家的原始数据,并与二手数据进行交叉引用,以确定在选择用于航空航天应用的 AM 设备时需要考虑的关键因素。专家们强调了四种 AM 技术:激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EBPBF)、线弧 AM (WAAM) 和激光金属沉积 (LMD),认为它们最适合航空航天应用。本研究的主要成果是开发了一个比较框架,帮助公司根据其主要业务或特定应用选择 AM 技术。
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
摘要 - 金属制造过程的未来,例如激光切割,焊接和添加剂制造,应依赖于行业4.0支头的智能系统。这样的数字创新确实正在推动机械制造商进行深刻的转变。是根据针对特定过程设计和优化的定制机器,雄心勃勃是利用开放性和大量的工业机器人可用性,以提高多流程实现的灵活性和可重新配置。挑战在于,机械构建者将自己转变为高知名度专业的过程驱动的机器人集成器,能够用智能传感和认知方面的过程控制器杠杆优化机器人运动。这项工作描述了BLM集团和Politecnico di Milano的多年合作,在CNR的支持下,重点是部署完整的机器人工作站,其特征是机器人控制和运动计划与制造过程的完整整合。索引术语 - 指导的能量沉积,激光金属拆卸,添加剂制造的设计,CAD/CAM
摘要 为了帮助制造企业实现人工智能 (AI) 的价值,我们开始了为期六年的研究和实践,以增强流行且广泛使用的 CRISP-DM 方法。我们通过添加“操作和维护”阶段以及嵌入基于任务的框架将任务与技能联系起来,将 CRISP-DM 扩展为 AI 解决方案的连续、主动和迭代生命周期。我们的主要发现涉及操作和维护 AI 解决方案和管理 AI 漂移的艰难权衡和隐性成本,以及确保在整个 CRISP-DM 阶段中存在领域、数据科学和数据工程能力。此外,我们展示了数据工程如何成为 AI 工作流程中必不可少但经常被忽视的一部分,对这三种能力的参与轨迹提供了新颖的见解,并说明了如何将增强的 CRISP-DM 方法用作 AI 项目的管理工具。
