● 认识到为所有加拿大人(包括偏远地区的人)提供连通性是促进加拿大所有地区人民安全、健康和繁荣的必要步骤 ● 回顾 ISED 的政策目标,包括“扩大未服务和服务不足地区的移动服务,包括农村、偏远和土著社区” ● 进一步回顾加拿大频谱政策框架的政策目标“最大限度地提高加拿大人从使用无线电频谱资源中获得的经济和社会效益” ● 认识到卫星为社会带来了许多好处,包括有助于缩小沟通差距 ● 担心新政策和规则将没有充分考虑到全球和加拿大卫星系统扩散的负面影响 ● 牢记努力最大化经济和社会效益而不考虑负面影响会造成环境危害,并无法长期最大化经济和社会效益 ● 承认磋商第 7.4 节承认 SMCS 需要与射电天文学共存 ●强调卫星系统的普及不仅是射电天文学家关注的问题,也是加拿大国内外光学天文学家和观星者关注的问题。● 请注意,ISED 认识到在许可 SMCS 系统的方法上需要区域和国际协调。● 强调加拿大已在世界各地的望远镜和天文台进行了大量投资,包括位于不列颠哥伦比亚省自治领射电天体物理天文台的开创性天文台,如加拿大氢强度测绘实验 (CHIME)、加拿大银河系发射测绘仪 (CGEM) 和加拿大氢天文台和射电瞬变探测器 (CHORD),以及国际设施
摘要:地静止的扩展观测或Geoxo是NOAA的未来地静止卫星星座,该星座将于2030年代初发射,并将其运行到2050年代。鉴于对地球系统的变化,技术的改进以及卫星数据使用者的不断扩展的需求,Geoxo将通过添加三个新仪器和一个新的航天器来扩展NOAA当前的观察套件。改进的成像仪和闪电映射器的版本将再次放置在东西方卫星上,在那里他们将监视严重的风暴,热带气旋,火灾和其他危害。它们将通过一种旨在检测有害藻华,浮游植物,叶绿素和其他成分的海洋色仪器加入。第三个地静止航天器将放置在美国中心,并将携带高光谱红外发音器,一种大气组成工具,并可能是合作伙伴有效载荷。来自音响器的辐射将被吸收到数值天气预测模型中,以改善预测,并且衍生的温度和水蒸气垂直曲线的检索将使预报员可以检测和跟踪增强不稳定性的区域。从新的大气组成仪器中检索诸如二氧化氮和臭氧的污染物以及从气候监测之外的空气质量监测,预测和警告,还将用于改善空气质量监测,预测和警告。完成后,Geoxo星座将有助于卫星的国际“地理环”,该卫星将用于全球天气,海洋,气候和空气质量监测。这个革命性的新地静止卫星星座将为不断变化的地球系统提供关键的观察。
摘要分析 1973 年,佛罗里达州立法机构颁布了《顾问竞争性谈判法案》(CCNA),要求州和地方政府机构通过基于资质的选择程序来采购建筑师、专业工程师、景观设计师或注册测量师和测绘师的专业服务。基于资质的选择是一个根据能力、资质和经验而不是价格来留用服务提供商的过程。CCNA 明确规定,它并不禁止公司与机构之间签订连续合同。连续合同是政府机构与公司根据 CCNA 签订的专业服务合同,根据该合同,公司为该政府机构提供多个项目的专业服务。CCNA 禁止连续合同的当事公司相互竞标。现行法律授权对每项工程的预计建设成本不超过 400 万美元的建设项目、每项研究的专业服务费用不超过 50 万美元的研究活动或机构要求的合同中规定的特定性质的工作使用连续合同,合同期限固定或没有时间限制,但合同必须包含终止条款。该法案将 CCNA 涵盖的连续合同的最高限额从预计每项工程建设成本 400 万美元提高到 750 万美元,再加上从 2026 年公布的消费者价格指数 (CPI) 开始的每年增长。该法案通过提高签订连续合同的金额门槛,可能会对州和地方政府支出产生积极但不确定的财政影响。请参阅财政评论。
引言 水文等水文应用需要配准和处理多传感器和多源数据,例如机载雷达、专题制图仪 (TM)、数字高程模型 (OEM) 和数字地形数据(道路、河流网络等)。尽管校正 TM 数据的问题相对较少,但机载雷达图像的情况更为复杂,因为视图几何形状和由此产生的图像扰动在场景中变化更快。不同的研究人员针对雷达情况测试了各种二维图像变换(Trevett,1984 年)。在大型场景中,这些变换受到根本限制,因为它们无法应对由地形引起的局部扭曲。引用的结果介于 5 到 100 米之间,取决于区域大小、地形和所用的二维变换类型。此外,立体雷达图像能够生成数字高程模型 (OEM) 和数字雷达地图 (Leber!等,1986)。摄影产品由数字图像创建,并用于使用雷达测绘方法的摄影测量立体绘图仪器。基于 16 个检查点,随机水平差异值在两个方向上均为 30 米(例如,使用的 SAR 图像的约 4 个像素)。通常,可以使用 OEM 和立体模型测量中的辅助数据生成正射影像 (Mercer,1986)。本文描述的方法是全数字化的,包括 SAR 图像、处理和正射影像生成。本研究开发的模型采用摄影测量方法,采用基于彩色图像的光束法平差技术
摘要。格陵兰数字高程模型 (DEM) 对于实地考察、冰速计算和质量变化估计必不可少。以前的 DEM 为整个格陵兰岛提供了合理的估计,但应用源数据的时间跨度可能会导致质量变化估计偏差。为了提供具有特定时间戳的 DEM,我们应用了大约 5 。从 2018 年 11 月到 2019 年 11 月的 8 × 10 8 ICESat-2 观测来生成新的 DEM,包括格陵兰岛外围的冰盖和冰川。分别在 500 m、1 km、2 km 和 5 km 网格单元进行时空模型拟合过程,并以 500 m 的模态分辨率发布最终 DEM。总共有 98% 的网格由模型拟合获得,其余的 DEM 间隙通过普通克里金插值法估算。与机载地形测绘仪 (ATM) 激光雷达系统获取的 IceBridge 任务数据相比,ICESat-2 DEM 估计最大中值差异为 − 0 。48 米。通过模型拟合和插值获得的网格性能相似,均与 IceBridge 数据高度一致。在低纬度和高坡度或粗糙度地区,DEM 不确定性会增加。此外,与其他高度计得出的 DEM 相比,ICESat-2 DEM 显示出显着的精度改进,并且其精度与立体摄影测量和干涉测量得出的精度相当。格陵兰 DEM 及其不确定性可在 https://doi.org/10.11888/Geogra.tpdc.271336 (Fan 等人,2021 年) 上找到。总体而言,ICESat-2 DEM 在各种地形条件下都表现出了出色的精度稳定性,可以提供具有特定时间戳的高精度 DEM,这将有助于研究格陵兰岛海拔和质量平衡变化。
作为该项目的一部分,CARB 于 2020 年与亚利桑那大学合作,并于 2021 年和 2023 年与 Carbon Mapper 合作,在加州部分地区进行羽流测绘飞行。在这些飞行中,共检测到 502 个甲烷羽流,与来自两个主要行业的 75 个不同运营商建立了 245 份联系:垃圾填埋场和石油和天然气设施。还检测到了来自其他行业的少量羽流,包括奶牛场、堆肥作业、厌氧消化器、炼油厂和热电联产厂,但这些羽流不在本报告的讨论范围内。CARB 工作人员确定了每个甲烷羽流源头的基础设施所有者,并通过 245 份独特的“事件报告”直接与垃圾填埋场和石油和天然气运营商分享了调查结果。运营商被要求通过实地调查(如有必要)确定排放的确切来源,修复排放源(如果可能),并向 CARB 报告他们的发现。运营商对这些事件报告的回应率为 94%。石油和天然气行业运营商通常会在一两天内采取行动,并在两周内对 CARB 做出回应。垃圾填埋场运营商通常会在一两周内采取行动,但许多垃圾填埋场运营商反应迟缓,直到几个月后才分享他们的发现。根据运营商的回应,40% 的事件被归类为“A 类”,这意味着运营商在没有收到 CARB 通知的情况下不知道排放情况,例如部件损坏或故障。12% 的事件报告被归类为“B 类”排放,这意味着检测到的甲烷羽流来自符合监管要求的正常运行产生的排放。27% 的事件被归类为“C 类”,这意味着检测到的羽流与短期维护或施工期间发生的排放有关。其余事件报告中的排放源是运营商在进行现场检查后未发现的(15%)或没有回应(6%)。在所有“A 类”排放情况下,运营商能够停止或修复相关部件并减轻排放源。因此,在约 40% 的已确定案例中,该技术直接支持了甲烷排放的减缓。
负责办公室:测绘办公室 佛罗里达土地利用、覆盖和形态分类系统 关于此版本:这是更新的佛罗里达土地利用、覆盖和形态分类系统。1985 年 9 月版本几乎与原版一样完整,除了一些添加的分类。我们要感谢佛罗里达州环境保护部在添加一些“湿地类别”方面做出的贡献。我们保留了第二版中的大部分简介。目的:自土地利用、覆盖和形态分类系统原版发布以来,地理测绘部分与遥感和数字测绘系统的不断发展同步发展。该部门目前经常使用更为复杂、先进的航空摄影形式、Landsat 多光谱扫描仪 (MSS) 数据和 Landsat 专题制图仪 (TM) 数据。此外,从遥感图像中提取的大多数图像数据和所有非图像数据都存储在计算机支持的地理信息系统中。这些资源的使用增加导致了对土地利用、覆盖和形态的非常精确的分类,以及在综合土地利用/覆盖/形态数据库中捕获图像数据和辅助非图像数据的灵活方法。由于这些能力的增强,专题制图部门的任务大大扩展,因此需要新版佛罗里达土地利用、覆盖和形态分类系统。1971 年,地理测绘科在佛罗里达州交通部地形局(现为测绘办公室)内成立。当时和现在,我们的使命是应要求协助其他州机构开展测绘活动。虽然我们的主要职责是交通部,但该部门也会不时满足其他政府机构的需求。1
土壤水分和植被生长是干旱事件最直接、最重要的指标,因此,了解植被和土壤的光谱行为对于干旱评估至关重要。最近,Ghulam 等人 [Ghulam, A., Qin, Q., Zhan, Z., 2006. Designing of the vertical dirt index. Environmental Geology, doi:10.1007/s00254-006-0544-2 (accessed March 8, 2007).] 建立了垂直干旱指数 (PDI),该指数基于对 NIR-Red 光谱空间中土壤水分空间分布特征的广泛分析。本文提出了一种改进的干旱监测方法,即改进的垂直干旱指数 (MPDI),引入了植被分数,同时考虑了土壤水分和植被生长。为了验证本文提出的干旱指数的有效性,利用不同时刻、不同干旱条件下不同生态系统的增强型专题制图仪 (ETM+) 和中分辨率成像光谱仪 (MODIS) 影像,计算了地面测点的 PDI 和 MPDI。然后将 PDI 和 MPDI 与通过卫星同步进行的田间测量获得的现场干旱指数进行比较,该指数包括不同土壤深度的土壤总含水量、田间持水量、萎蔫系数等。从结果可以看出,PDI 和 MPDI 与现场干旱值高度一致,相关性最高 ( R 2 =0.
美国宇航局的自主模块化扫描仪 (AMS) – 野火传感器:从机载平台改进野火观测 V. Ambrosia a, *, J. Myers b , E. Hildum b a 加州州立大学 - 蒙特利湾 / 美国宇航局艾姆斯研究中心,美国加利福尼亚州莫菲特菲尔德 - vincent.g.ambrosia@nasa.gov b 大学附属研究中心 (UARC),美国宇航局艾姆斯研究中心,美国加利福尼亚州莫菲特菲尔德。– jeffrey.s.myers@nasa.gov, edward.a.hildum@nasa.gov 摘要 - 美国宇航局自主模块化扫描仪 (AMS) – 野火传感器是一种机载 16 波段线扫描仪,其通道位于 VIS-IR-MIR-TIR 光谱区域。四个 AMS 热通道复制了两个拟议的 NPOESS VIIRS 通道的光谱带通区域,并可以更好地辨别野火情况。AMS 已在一系列有人驾驶和无人驾驶飞机上运行,包括 NASA Ikhana UAS。机载处理器允许从光谱数据中获取近实时的 2 级产品,并通过卫星链路发送给地面调查人员。自 2006 年以来,AMS- Wildfire 仪器已在美国西部广泛飞行,为灾害管理人员提供实时火灾产品,这些产品可定义热点、活跃火灾、阴燃和火灾后情况。在 2007-2010 年的活动期间,AMS 通过在野火事件上同时收集 MODIS 数据来支持卫星校准和验证工作。这些测量提高了人们对卫星观测的理解,并重新将重点放在 AMS 传感器上,作为一种能够得出关键火灾参数的仪器,以便更好地推断野火的热特性。借助 AMS 仪器的高空间、时间和辐射测量能力,可以更好地辨别火灾特性。机载平台提供的“持续”能力允许对火灾特性进行时间观察,而不是卫星系统提供的单一观察。将重点介绍 AMS 的运营、成功的任务以及未来用于支持火灾科学界和灾害管理界的计划。1 关键词:NASA、AMS、UAS、野火、VIS-IR-MIR-TIR 1.简介 自主模块化扫描仪 (AMS) - WILDFIRE 传感器是一种多用途 NASA 设施传感器系统和模块化 UAS 系统,供科学和应用界使用。AMS 扫描仪由具有三个配置光学头的 Daedalus AADS-1268 扫描系统组成。该配置主要在 NASA ER-2 高空飞机平台上飞行。其中一种配置是专题制图模拟器 (TMS),用于土地覆盖研究,也用于野火成像。新的 AMS 被重新配置为具有类似扫描头的全功能 UAS 兼容传感器 * 通讯作者。
美国宇航局的自主模块化扫描仪 (AMS) – 野火传感器:从机载平台改进野火观测 V. Ambrosia a, *, J. Myers b , E. Hildum b a 加州州立大学 - 蒙特利湾 / 美国宇航局艾姆斯研究中心,美国加利福尼亚州莫菲特菲尔德 - vincent.g.ambrosia@nasa.gov b 大学附属研究中心 (UARC),美国宇航局艾姆斯研究中心,美国加利福尼亚州莫菲特菲尔德。– jeffrey.s.myers@nasa.gov, edward.a.hildum@nasa.gov 摘要 - 美国宇航局自主模块化扫描仪 (AMS) – 野火传感器是一种机载 16 波段线扫描仪,其通道位于 VIS-IR-MIR-TIR 光谱区域。四个 AMS 热通道复制了两个拟议的 NPOESS VIIRS 通道的光谱带通区域,并可以更好地辨别野火情况。AMS 已在一系列有人驾驶和无人驾驶飞机上运行,包括 NASA Ikhana UAS。机载处理器允许从光谱数据中获取近实时的 2 级产品,并通过卫星链路发送给地面调查人员。自 2006 年以来,AMS- Wildfire 仪器已在美国西部广泛飞行,为灾害管理人员提供实时火灾产品,这些产品可定义热点、活跃火灾、阴燃和火灾后情况。在 2007-2010 年的活动期间,AMS 通过在野火事件上同时收集 MODIS 数据来支持卫星校准和验证工作。这些测量提高了人们对卫星观测的理解,并重新将重点放在 AMS 传感器上,作为一种能够得出关键火灾参数的仪器,以便更好地推断野火的热特性。借助 AMS 仪器的高空间、时间和辐射测量能力,可以更好地辨别火灾特性。机载平台提供的“持续”能力允许对火灾特性进行时间观察,而不是卫星系统提供的单一观察。将重点介绍 AMS 的运营、成功的任务以及未来用于支持火灾科学界和灾害管理界的计划。1 关键词:NASA、AMS、UAS、野火、VIS-IR-MIR-TIR 1.简介 自主模块化扫描仪 (AMS) - WILDFIRE 传感器是一种多用途 NASA 设施传感器系统和模块化 UAS 系统,供科学和应用界使用。AMS 扫描仪由具有三个配置光学头的 Daedalus AADS-1268 扫描系统组成。该配置主要在 NASA ER-2 高空飞机平台上飞行。其中一种配置是专题制图模拟器 (TMS),用于土地覆盖研究,也用于野火成像。新的 AMS 被重新配置为具有类似扫描头的全功能 UAS 兼容传感器 * 通讯作者。