我们对一项名为动力电池检测(PBD)的新任务进行了全面的研究,该任务旨在从 X 射线图像中定位密集的阴极和阳极板端点,以评估动力电池的质量。现有制造商通常依靠人眼观察来完成 PBD,这使得很难平衡检测的准确性和效率。为了解决这个问题并让更多人关注这个有意义的任务,我们首先精心收集了一个称为 X 射线 PBD 的数据集,该数据集包含从 5 家制造商的数千个动力电池中选择的 1,500 张不同的 X 射线图像,具有 7 种不同的视觉干扰。然后,我们提出了一种基于分割的新型 PBD 解决方案,称为多维协作网络(MDCNet)。借助线和计数预测器,可以在语义和细节方面改进点分割分支的表示。此外,我们设计了一种有效的距离自适应掩模生成策略,可以缓解由板分布密度不一致引起的视觉挑战,从而为 MDCNet 提供稳定的监督。无需任何花哨的修饰,我们基于分割的 MDCNet 始终优于其他各种角点检测、人群计数和基于一般/微小物体检测的解决方案,使其成为有助于促进 PBD 未来研究的强大基础。最后,我们分享了一些潜在的困难和未来研究的工作。源代码和数据集将在 X-ray PBD 上公开提供。
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
2.2. 价值................................................................................................................................................ 18
摘要估计表明,全球供人消费的大量食物被丢失或浪费,这强调了减少食物浪费以解决环境问题的重要性。这项研究研究了来自十个巴西街头市场的25种不同食物废物分数的一代和相关的碳足迹。目的是确定食品类别中的热点,分析食物浪费的原因并研究阻碍食物浪费减少的潜在危险因素。本研究在确定预防和价值措施以及废物管理策略以增强农业发展系统的可持续性时寻求提供支持。该研究表明,每周在RibeirãoPreto和SãoPaulo的街头市场中,每个摊位的4.98公斤和20.15公斤的食物都会浪费,导致平均碳足迹为6.74 kg和35.20 kg CO 2 EQ。每个摊位。具有最大碳足迹的三种食品类别是(1)不可避免的食物浪费,(2)叶子,花和茎以及(3)肉。RibeirãoPreto和圣保罗街市场的年度食品废物产生估计分别为每年0.50和2.22公斤。这表明从垃圾填埋场到其他废物管理方法将有机食品浪费,尤其是不可避免的废物转移,具有减少碳足迹的巨大潜力。叶子,鲜花和茎以及肉类应优先考虑预防措施。
该法案将扩大密歇根州公共服务委员会 (MPSC) 的明确权力,使其在 IRP 案件程序的决策过程中考虑气候、公平性和可负担性。MPSC 现在将能够考虑某些资源计划对环境正义社区的影响,而不是仅仅关注资源的可靠性和成本。该法案还要求 MPSC 每年举办四次公众意见听证会。重要的是,它通过公用事业消费者参与委员会 (UCPB) 将公民干预的资金增加了三倍,并扩大了我们能够干预的案件数量,赋予 MPSC 案件的干预者更多权力。最后,它呼吁 UCPB 尝试资助更多的环境正义和社区团体。
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
多年来,单板计算机 (SBC) 领域的发展一直在不断加快。它们在计算性能和功耗之间实现了良好的平衡,这通常是移动平台所必需的,例如用于高级驾驶辅助系统 (ADAS) 和自动驾驶 (AD) 的车辆应用。然而,对更强大、更高效的 SBC 的需求日益增长,这些 SBC 可以实时运行功耗密集型深度神经网络 (DNN),还可以满足必要的功能安全要求,例如汽车安全完整性等级 (ASIL)。ZF 正在开发“ProAI”,主要用于运行强大而高效的应用程序,例如多任务 DNN,此外,它还具有 AD 所需的安全认证。在这项工作中,我们基于功耗密集型多任务 DNN 架构 Multitask-CenterNet,就 FPS 和功率效率等性能指标比较和讨论了最先进的 SBC。作为一款汽车超级计算机,ProAI 实现了性能和效率的完美结合,其每瓦 FPS 数量几乎是现代工作站笔记本电脑的两倍,几乎是 Jetson Nano 的四倍。此外,根据基准测试期间的 CPU/GPU 利用率,还显示 ProAI 上仍有剩余电量用于执行进一步更复杂的任务。
本系列报告的主要目的是全面概述行业格局,包括药物发现、临床研究和制药研发其他方面采用人工智能的情况。本概述以信息丰富的思维导图和信息图表的形式突出趋势和见解,并对构成行业空间和关系的关键参与者的表现进行基准测试。这是一项概述分析,旨在帮助读者了解当今行业正在发生的事情,并可能让人们了解接下来会发生什么。自上一版以来,我们引入了大量更新,重点介绍了快速发展的行业动态,以及制药人工智能领域投资和业务发展活动的总体增长。人工智能生物技术公司、生物技术投资者和制药组织的名单已扩大到包括新实体,并增加了一份新的领先合同研究组织 (CRO) 名单,以概述合同研究行业对高级数据分析技术日益增长的兴趣。我们还重新审视了上一版的数据和章节,并反思了自那以后发生的变化。除了投资和商业趋势外,该报告还对人工智能应用和研究的一些最新成果提供了技术见解。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
糖尿病管理的一个重要措施是监测血糖,这往往需要连续采血,带来经济负担和不适。血糖和糖化血红蛋白A1c是传统的血糖监测指标。但现在糖化白蛋白、果糖胺和1,5-脱水葡萄糖醇(1,5-AG)越来越受到关注。1,5-AG是人体内化学稳定的单糖。当血糖水平正常时,其血清浓度保持稳定。然而,当血糖超过肾糖阈值时,它会降低。研究表明,1.5-AG反映1至2周内的血糖变化;因此,血清1,5-AG水平降低可以作为短期血糖紊乱的临床指标。最近的研究表明,1,5-AG不仅可用于糖尿病的筛查和管理,还可用于预测糖尿病相关不良事件和糖尿病前期患者的胰岛b细胞功能。此外,唾液1,5-AG在糖尿病的筛查和诊断中也具有潜在的应用价值,本文就1,5-AG的生物学特性、检测方法及临床应用等方面进行综述,以促进今后对1,5-AG的认识和应用研究。