糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
传统的还原主义方法已成功地用于获得有关单基因疾病和疾病的知识。然而,这种策略不足以探测和理解诸如糖尿病,代谢综合征(MS)和胰岛素相关疾病之类的复杂疾病,其中多种基因和系统受到干扰。理解这种复杂的相互关系和串扰需要整体或系统级集成,这可以通过单词/综合多摩学方法来实现。本研究主题探讨了单词和综合多摩s分析如何改变我们对代谢综合征,糖尿病和胰岛素相关疾病的机制,生物标志物和治疗靶标的复杂网络的理解。与还原主义的方法不同,单词/多摩斯技术为复杂疾病提供了整体观点,强调了它们有可能促进个性化医学的潜力,并具有针对性的疗法,并在针对这些疾病的情况下为这些疾病提供了新的希望。
方法:对基因表达综合数据库中两种疾病的公开数据进行差异表达分析和加权基因相关网络分析(WGCNA),寻找与两种疾病相关的基因。利用蛋白质-蛋白质相互作用(PPI)、基因本体论和京都基因和基因组百科全书来识别与T2DM相关的MAFLD基因和潜在机制。利用机器学习算法结合12种cytoHubba算法筛选候选生物标志物,构建并评估T2DM相关MAFLD的诊断模型。采用CIBERSORT方法研究MAFLD中的免疫细胞滤过和中心基因的免疫学意义。最后,采集T2DM相关MAFLD患者、MAFLD患者和健康个体的全血,并采用高脂、高糖结合高脂细胞模型来验证中心基因的表达。
最后,我要感谢我的家人,感谢你们一直以来的支持。我希望我让你们为我感到骄傲,并将继续这样做。爸爸,谢谢你们一直相信我。伊萨姆,我的哥哥,我希望我能成为你们的灵感源泉,正如你一直告诉我的那样。我最亲爱的妈妈和我的妹妹海法,这一成就,以及你们所说的成功,是对你们无尽的支持、爱和牺牲的证明。妈妈,你不懈的努力、对我的信任以及在所有挑战中陪伴着我,一直是我的力量源泉。海法,你的鼓励和陪伴让我脚踏实地,充满动力。我希望这一里程碑能带给你们和你带给我生命中的快乐和自豪一样多。我会一直努力让你们为我感到骄傲,因为你们塑造了今天的我。还有我的妹妹胡埃达,我为她感到无比自豪,你教会了我很多东西,我永远敬佩你。你的毅力、自信和取得更大成就的动力是我不断的灵感源泉。你每天都让我惊叹不已。Pitouti,我爱你。Wenti outi,wenti zeda,wenti zeda,wenti zeda……。
持续感染高危型人乳头瘤病毒 (HR-HPV) 以及随后的病毒癌蛋白 E6 和 E7 上调被认为是宫颈癌变中的关键分子事件 ( 1 , 2 )。这些癌蛋白会干扰关键宿主肿瘤抑制蛋白的功能,导致恶性转化。具体来说,E6 会促进 p53 的降解,p53 是一种对程序性细胞死亡至关重要的肿瘤抑制因子,而 E7 则会抑制通常调节细胞周期进程的视网膜母细胞瘤蛋白 (pRb) ( 3 , 4 )。p53 和 pRb 功能的破坏会导致染色体不稳定和癌症发展 ( 5 )。在各种 HR-HPV 类型中,HPV16 最为常见(其次是 HPV18),是全球 50% 以上宫颈癌病例的诱因 ( 6 – 8 )。 HPV 感染发生在宫颈上皮未分化的基底细胞中,病毒早期蛋白 E1、E2、E6 和 E7 在此细胞中表达水平较低(9)。随着被感染细胞的分化,病毒晚期蛋白 L1 和 L2 产生,用于衣壳的形成和病毒颗粒的组装。E4 蛋白通过与宿主细胞骨架结合协助病毒颗粒的释放(10,11)。高免疫原性的 L1 蛋白的产生受宿主蛋白和表观遗传修饰的调控,确保其仅在分化细胞中表达,从而逃避免疫检测(12)。HPV16 L1 蛋白及其相关 mRNA 在低度宫颈病变和增殖性感染中可检测到,但其缺失与高度病变高度相关(13,14)。虽然 L1 编码序列在转化细胞中保持完整,但衣壳蛋白不会合成(15)。尽管 HR-HPV 感染是宫颈癌的必要前兆,但只有一小部分感染者会发展为宫颈癌 ( 16 , 17 )。目前的 HPV DNA 检测不足以准确识别需要阴道镜检查的 HR-HPV 阳性女性,因为许多感染都是暂时性的 ( 18 )。目前建议对 HPV16 和 HPV18 进行基因分型,并结合细胞学检查进行宫颈癌筛查 ( 19 );然而,需要更特异的生物标志物来分类 HPV16 或 HPV18 阳性的女性,并减少不必要的阴道镜转诊 ( 20 , 21 )。宿主基因和 HPV 基因的甲基化已得到广泛研究,并被证实与宫颈异常有关 ( 22 , 23 )。甲基化修饰,例如 L1 基因内的 CpG 位点甲基化,可以控制该基因的表达,该基因在转化的宫颈细胞中经常被沉默。亚硫酸氢盐测序报告称 3' L1 基因区域的甲基化水平较高,表明其在控制 L1 表达方面具有潜在作用 ( 24 , 25 );然而,亚硫酸氢盐测序和直接测序等方法可能导致临床样本中甲基化水平估计不准确。焦磷酸测序,一种更准确的定量方法,已用于测量 HPV DNA 甲基化,揭示了各种 HPV 类型的 L1 和 L2 区域的高甲基化( 26 , 27 )。最近的研究表明,L1 基因甲基化可以区分宫颈上皮内瘤变 3 (CIN3) 和浸润性宫颈癌( 26 , 28 )。
肌酸转运蛋白缺乏症(CTD)是一种罕见的X连锁疾病,导致大脑肌酸缺乏症。临床特征包括明显的发育延迟,智力障碍,自闭症谱系障碍,癫痫发作和运动功能障碍。由于肌酸转运蛋白的缺陷,肌酸无法通过血脑屏障或神经元膜,因此口服肌酸治疗无效。为了解决这个问题,CERES Brain Therapeutics正在开发一种肌酸生产的候选者CBT101,具有创新的给药方式,以提高脑神经元中的肌酸水平:肌酸对肌酸溶液™溶液。需要生物标志物来评估这种治疗创新的潜在影响,以及将来将来进行CTD临床试验以获取可靠的数据。
1 Research Unit, General University Hospital of Albacete, Health Service of Castilla-La Mancha (SESCAM), Albacete, Spain, 2 Molecular Oncology Laboratory, Molecular Medicine Unit, Associated Unit of Biomedicine, University of Castilla-La Mancha-Spanish National Research Council (UCLM- CSIC), Faculty of Medicine, Albacete, 39 cine, University of Castilla-La Mancha, Albacete, Spain, 4 Immunology Unit, Clinical Analysis Department, General University Hospital of Albacete, Albacete, Spain, 5 Microbiology Department, General University Hospital of Albacete, Albacete, Spain, 6 Research Unit, General University Hospital of Albacete, Albacete, National Parastatics of Toledo, Albacete, Spain, 7 Internal Medicine Department, General University Hospital of Albacete, Albacete, Spain, 8 Biomedicine Institute of UCLM (IB-UCLM), Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain, 9 Faculty of Pharmacy, Associated University of Castile-La Mancha, 10 of Biomedicine UCLM- CSIC, University of Castilla-La Mancha, Ciudad Real, Spain, 11 Neurology Department, General University Hospital of Albacete, SESCAM, Albacete, Spain, 12 Faculty of Medicine, University of Castilla- La Mancha, Albacete, Spain
图3。km存活曲线(顶部面板)和多元Coxph森林图(底部面板)说明了POL/POLD 1的左侧的RWPF(左侧RWPF,右侧RWOS)的结果(RWOS),用免疫疗法(IO)治疗的患者(IO)以及与化学疗法和IO + IO + IO + IO + IO + IO + IO(IO)组合的结局(左侧),并与IO + IO + IO(IO)组合进行了突变(基因(其他)。在KM图中指定了随着时间的流逝的中位生存时间和处于危险中的患者人数。森林图具有多元COXPH模型的危险比(HR),所有协变量(POL/POLD1突变,TMB,MSI状态和指示)的置信间隔为95%,表明相对的进展或死亡风险。
最近的研究表明,怀孕和父母身份的转变对人类大脑结构特征有显著影响。在这里,我们介绍了一项全面的研究,研究了父母身份和出生/父亲的孩子数量与 36,323 名英国生物库参与者(年龄范围为 44.57 – 82.06 岁;52% 为女性)的大脑和细胞衰老标志之间的关联。为了评估父母身份对大脑的整体影响,我们在 T1 加权磁共振图像上训练了一个 3D 卷积神经网络,并在保留的测试集中估计了大脑年龄。为了研究区域特异性,我们使用 FreeSurfer 提取了皮质和皮质下体积,并运行了层次聚类以根据协方差对区域体积进行分组。来自 DNA 的白细胞端粒长度 (LTL) 被用作细胞衰老的标志。我们采用线性回归模型来评估孩子数量、大脑年龄、区域大脑体积和 LTL 之间的关系,并包括交互项以探究关联中的性别差异。最后,我们将大脑测量值和 LTL 作为二元分类模型中的特征,以确定大脑和细胞老化的标志是否可以预测父母身份。结果显示,无论男女,出生/父亲的孩子数量越多与大脑年龄越小之间存在关联,女性的影响更大。基于体积的分析显示,纹状体和边缘区域存在母体效应,而父亲则没有。我们没有发现孩子数量与 LTL 之间存在关联的证据。父母身份分类显示大脑年龄模型的 ROC 曲线下面积 (AUC) 为 0.57,而使用区域大脑体积和 LTL 作为预测因子的模型显示 AUC 为 0.52。我们的研究结果与之前针对中老年父母的基于人群的研究一致,揭示了父母经验与基于神经影像的大脑健康替代指标之间存在微妙但重要的关联。该研究结果进一步证实了对父母在怀孕和产后进行的纵向队列研究的结果,可能表明父母身份的转变与大脑健康的长期影响有关。
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
