基于铁的纳米材料(INM),由于其特殊的磁性,出色的生物相容性和功能,已在肿瘤诊断和治疗中已发展为强大的工具。我们在此处概述了诸如氧化铁纳米颗粒,元素掺杂纳米复合材料和铁基有机框架(MOFS)等INM如何显示多功能性,以改善肿瘤成像和治疗。在成像方面,INM提高了磁共振成像(MRI)和光声成像(PAI)等技术的灵敏度和准确性,并支持多模式成像平台的开发。关于治疗,INM在高级策略中起着关键作用,例如免疫疗法,磁性高温和协同组合疗法,这些疗法有效地克服了肿瘤诱导的耐药性并降低全身毒性。INM与人工智能(AI)和放射线学的整合进一步扩展了其精确肿瘤识别,治疗优化和扩增治疗监测的能力。INM现在将材料科学与先进的计算和临床创新联系起来,以实现下一代癌症诊断和治疗学。
阴极负责电池电池的几种关键特性。体积能量密度表示每卷电池电池可以存储多少个电能。此属性在设计中具有空间限制(例如移动性和消费电子设备)的应用中很重要。功率密度是每单位重量或体积可以传递的功率量。更高的功率密度意味着可以为给定尺寸提供更多电源的电池。高要求的应用程序(例如电动汽车)将需要更多的功率,而不是少苛刻的应用程序(例如电子驾驶员)。循环寿命是电池在达到寿命结束之前可以进行的电荷释放周期的数量。较高的循环寿命意味着电池更持久。此属性对于
“ perovskite光伏是商业化的门槛,但仍面临长期稳定性的挑战,并缩放到大型表面积。“我们的研究表明,机器学习对于改善工业生产所需的钙钛矿薄膜形成至关重要。”
众所周知,材料的性能高度取决于其结构。对这种关系主题的研究始终是物质科学家的重点。由于其特殊的机械性能,较大的特定表面积,出色的电气/热传导3D网络以及特殊的多孔结构,因此已设计和应用多功能的层次纳米结构材料,用于各种材料系统,包括聚合物,金属,无机材料及其复合材料。研究材料的机械,电气,热和电化学特性的独特纳米结构的机制对于获取新知识和为开发新的高级材料铺平道路至关重要。因此,该领域的调查吸引了增加的研究兴趣。纳米材料特刊的目的是整理与设计和制造等级纳米结构材料及其各种应用领域的最新进步有关的最新贡献。
计算材料科学工具生成的数据量不断增加,这推动了新机器学习模型的发明,并随后协助发现了新材料。在这里,我们提出了对数据本身的逾期质疑:它适合培训机器学习模型吗?通过检查材料项目数据集中的凸壳(E H),电子带隙和形成能数据的能量,我们发现E H是一个不稳定的数量,这是因为数据库没有足够的化学空间表示化学空间,这是计算晶体分解所必需的。E H的不稳定也适用于DFT计算的电压,因为计算的电压是从已知的阳离子不足稳定材料获得的电压的平均值。我们还显示了材料项目数据库中报告的电子带隙值的差异,并且由于分层材料的间层间距离的任意变化或找到减少在数据库中沉积值以下结构的能量的优化参数,因此形成能量数据可能会改变。我们讨论了减轻这些数据问题的可能方法。
“使用Conflex Heatseal,我们提供了一张商业上可行的可爱纸,该纸支持企业从塑料过渡。它在现有纸质回收系统中提供了强大的密封性能和可回收性,并在Billerud提供过渡支持的稍微修改的转换过程中工作。很高兴看到我们如何实现通过创新为低碳社会制造高性能包装材料的目的。”
纳米科学和纳米技术是令人兴奋的研发领域,在电子,光学和磁性设备,生物学,医学,能量和防御中广泛应用。这些领域的核心是具有较低纳米尺度尺寸的新材料的合成,表征,建模和应用,我们称之为“纳米材料”。这些材料可以表现出异常的介质特性,包括纳米颗粒,涂料和薄膜,金属 - 有机框架,膜,纳米合金,量子点,自组件,2D材料,例如石墨烯和纳米管。我们的杂志纳米材料的目标是向跨学科科学受众发表有关纳米材料科学各个方面的最高质量论文。我们的所有文章都以严格的裁判和开放式出版。
pia.schweizer@cea.fr电子探针微分析(EPMA)是一种可靠且广泛使用的技术,可用于对科学和工业应用进行非破坏性,准确的材料表征。尽管对锂具有极大的兴趣(LI),并且迫切需要在微米级进行准确的非破坏性分析,但使用EPMA对LI的LI量化尚未成功进行。最近开发的周期性多层允许围绕特征性的li k发射〜50 eV [1]的能量范围的光谱,但是配备有弯曲的晶体光谱仪和标准商业化多层的微型探针检测和定量没有衍射光栅仍然具有挑战性。LI检测的困难是由不同的因素引起的:LI的荧光产量极低,很少有Li 1S核心孔的衰减产生的特征光子,有利于螺旋电子的发射。由于其低能量,光子甚至在离开样品及其最终涂层之前就被强烈吸收。因此,信号主要来自可能受到污染的薄表面层,并且可能对电子轰击敏感。微探针成分,尤其是通过分离窗口的进一步吸收光子,将降低测得的强度。由于Li K发射(2p - 1s转变)涉及价电子,因此Li发射带的形状高度依赖于价带中的状态密度(DOS),并且高度依赖于锂原子的化学状态。SCI。 2021,11,6385。 2022,51(4),403。SCI。2021,11,6385。2022,51(4),403。某些EV和强峰形变化的化学位移可能会发生,对于光元的EPMA应该是预期的[2,3],使定量分析变得复杂。这项工作显示了不同材料中LI定量EPMA的一些有希望的结果,包括电池化合物和LI浓度降至2%的金属合金。在整合新检测系统以及使用适用于低压EPMA的实际标准和校正程序进行定量程序之后,这是可能的。即使需要进行额外的调查,研究人员的锂表征也引起了极大的兴趣。我们表明,即使EPMA包含在重矩阵中,EPMA是对LI进行定量分析的强大工具,其元素显示出与LI相同的光谱范围内的特征发射带。这种新颖的LI量化方法比使用SEM或配备了多层光栅的ENER或电子微探针检测到其他技术更容易访问,并且比检测更便宜。[1] Polkonikov,V.,Chkhalo,N.,Pleshkov,R.,Giglia,A.,Rividi,N.,Brackx,E.,Le Guen,K.[2] Schweizer,P.,Brackx,E.,Jonnard,P。,X射线光谱。[3] Hassebi,K.,Le Guen,K.,Rividi,N.,Verlaguet,A.,Jonnard,P.,X-Ray Spectrom。(http://doi.org/10.1002/xrs.3329)在印刷中。
(a)Anomala albopilosa的Elytron的反射和透射光学显微照片。(b)Anomala albopilosa的Elytron的透射光学显微照片。(c)左圆极化光板下方的Anomala albopilosa的金属绿色反射。(d)在右圆极化光板下没有反射。(E)左圆极化光板下方的金属紫色反射。(f)在右圆极化光板下没有反射。(g)左右圆形偏振板下的照片,L + R表示左右极化器的重叠。信用:下一材料(2025)。doi:10.1016/j.nxmate.2025.100516