根据具体应用,汉高提供多种热界面材料 (TIM) 解决方案,通过有效的热管理支持提高高功率密度线卡的系统级性能和可靠性。垫片、薄膜、液体和凝胶介质中的一系列配方可为下一代网络设备和高性能计算服务器中使用的大型高性能第 1 层/第 2 层交换机 ASIC、FPGA 和 GPU 设备提供有效且高效的散热。对于不需要较大散热器附件的 IC 设备,汉高的低模量、高导电性 BERGQUIST GAP PAD ® 可提供出色的贴合性和低应力热性能。作为传统导热油脂的替代品,BERGQUIST 相变 TIM 可在特定温度下变成液相的糊状配方中实现类似的易用性和灵活性。然而,BERGQUIST 相变 TIM 不会出现油脂通常会出现的“泵出”和热性能随时间下降的情况。
1/3当一个人根据不同的n c缩放区域II参数时。可以看到,基于这个简单的天真论证,区域I和II在小n c中彼此靠近。但是,众所周知,较小的N C表达对小N C分解,因此上述缩放只是建议的考虑。尽管如此,这可能表明这两个区域可以重合小n C,并激发未来的晶格研究。请注意,其他量规组可以为此目的更好地工作。例如,sp(2 n c)衡量n f = 2(基本代表中的四个Weyl fermions)将导致手性拉格朗日,coset Space Su(4) /sp(4) /sp(4)= So(6) /so(6) /so(6) /so(5)= s 5。向量介子在SO的伴随表示中(5)。在测量u(1)子组时,对称性将分解为u(2),而nambu -goldstone玻色子分为(k +,k-,k 0 1,k 0 1,k 0 2,k 0 3)。当中性较重时,低洼的光谱与我们讨论的SU(N C)仪表理论相同,而矢量介子之一可以出现在K + K-通道中。同样,n f = 2的SO(n c)仪表理论(vector代表中的两个Weyl fermions)具有仅具有K±状态的coset空间SU(2) /SO(2)= S 2。在这种情况下,我们也期望K + K-通道中有单个向量介子。关于这种可能性的论述讨论超出了本文的范围,将在[5]中进行讨论。
纸质代码:17UCH07物理化学(60小时)内部评估标记:25外部标记:75 Unit-I化学平衡1.1。平衡常数的热动力学推导-KP,KC,KC和KX - KP,KC和KX-Standard standard standard donefria的自由化的hoff Isofe iSOther-d donder iS hoff iSother-d Donder的均化学治疗(衍生) - 平衡常数hoff等距压力依赖的温度依赖性的平衡常数依赖性。1.2。吸附 - 吸附等温线的物理和化学吸附类型 - 芬格利希吸附等异位衍生等异位吸附等温线(Bet shot sotherm(suptionates hose)bet equation(statement)。单元II化学动力学-I 2.1.二阶反应的速率常数的源 - 当反应物以不同的初始浓度取时 - 当反应物以相同的初始浓度以相同的初始浓度取用时 - 在相同初始浓度时采取反应物的II级反应速率速率常数的速率常数。对第二和三阶反应的半衰期的衍生,具有相等的初始反应物浓度。2.2.在动力学 - 量化,测量,极化法和色彩法的研究中,确定反应实验方法的顺序的方法。2.3。温度对Arrhenius频率因子激活能量确定性的ARRHENIUS方程概念的反应速率衍生作用的影响。lindemann单分子反应的理论。激活和激活熵的自由能的重要性。4.5。单位III化学动力学-II 3.1。碰撞速率常数CT碰撞理论 - 反应速率常数的反应速率衍生理论。 3.2。3.3。基于ARRT和CT之间的ARRT比较,双分子反应的绝对反应速率 - 热动力学推导的速率常数。单元IV电解化学 - I 4.1.金属和电解电导 - 特定,等效和摩尔电导的定义 - 它们之间的关系 - 它们之间的关系 - 测量电导和细胞常数。4.2.稀释的电导变化 - 定性解释 - 强和弱的电解质。4.3。离子的移民 - 运输数 - Hittorf和移动边界方法的确定 - Kohlrausch定律 - 应用 - 计算弱电解质的等效电导和运输号的确定。4.4。离子迁移率和离子电导。扩散和离子迁移率 - 摩尔离子电导和粘度 - 沃尔登规则。电导测量的应用 - 弱电解质的解离程度 - 水的离子产物的确定 - 确定少于可溶性盐的溶解度 - 电导滴定。单位 - V强电解质理论5.1.Debye - Huckel - Onsager理论 - OnSager方程的验证 - Wein和Debye - Falkenhagen效应。5.2。强电解质的活性和活性共效力 - 离子强度。