摘要:本文报道了基于有限差分时域 (FDTD) 和有限元法 (FEM) 的介电谐振器材料测量装置建模的最新进展。与介电谐振器设计方法不同,介电谐振器设计方法使用贝塞尔函数的解析展开来求解麦克斯韦方程,而本文仅使用解析信息来确保场的固定角度变化,而在纵向和径向方向上应用空间离散化,从而将问题简化为 2D。此外,当在时域中进行离散化时,全波电磁求解器可以直接耦合到半导体漂移扩散求解器,以更好地理解和预测基于半导体的样品的谐振器的行为。本文将 FDTD 和频域 FEM 方法应用于介电样品的建模,并根据 IEC 规范规定的 0.3% 范围内的测量结果进行验证。然后采用内部开发的耦合多物理场时域 FEM 求解器,以考虑电磁照明下的局部电导率变化。由此展示了新方法,为介电谐振器测量的新应用开辟了道路。
Founded in 1807 in New York City by John Wiley To this day family-owned in the 7 th generation Approximately 5,000 employees worldwide Company headquarters in Hoboken (New Jersey) Wiley Online Library has 130 million users worldwide >1,700 journals, >940 society partners, >460 Nobel laureates
随着人工智能 (AI) 和物联网 (IoT) 的融合重新定义了行业、商业和经济的运作方式,对边缘节能和高性能计算的需求呈指数级增长。神经形态计算是一种新兴的计算范式,受到生物大脑的低功耗和并行处理能力的启发,克服了传统计算机架构的许多限制。最重要的是,通过在内存中执行计算,神经形态计算克服了冯·诺依曼瓶颈,从而提高了计算能力,同时节省了更多的面积和功耗。虽然已经开发出几种具有出色能效的独立神经形态芯片来运行特定的人工智能算法,但这种数字系统在与边缘传感器连接时仍然会受到影响。这是因为传感输入是非结构化的、非规范化的和碎片化的,这会给具有分离的传感和处理单元的数字系统带来巨大的能源、时间和布线开销。这就需要融合传感、内存和处理功能的内存传感技术,以充分发挥生物电子学和机器人学中使用的高度复杂的传感器和执行器系统的潜力。尽管内存传感和计算的概念还处于起步阶段,但它已经在电子皮肤和仿生眼等专业领域取得了重大进展。然而,这些主要是软件实现,与之相辅相成的硬件挑战尚未得到解决。要充分利用仿生边缘处理能力,仍存在硬件层面(材料和设备)的基本挑战需要解决。因此,“内存传感和计算:新材料和设备迎接新挑战”于去年启动,引发了对最新发展和观点的讨论。来自微电子、材料和计算机科学等多学科背景和不同地区的研究人员已经发表了与此相关的意见和/或原创作品
抽象免疫疗法可以利用宿主免疫系统与癌症作斗争的能力。在过去的几十年中,在这一领域取得了巨大进展,其临床成功取得了显着的临床成功,包括一小部分患者的持久反应。但是,将这种疗法扩展到大多数癌症患者的同时,在保持最小的不良反应的同时,存在巨大的挑战。局部免疫疗法是一种有前途的方法,可以原位浓缩免疫调节,而无需全身暴露,因此最大程度地减少了全身毒性。更重要的是,局部免疫调节仍然会导致全身作用,从而赋予整体抗癌免疫以消除传播性疾病。为了促进这些局部免疫疗法,已经开发出广泛的生物材料作为递送系统,以保护当地注射的免疫相关治疗疗法并扩大其保留率。无手术注射的宏观生物材料是迄今为止开发的最有前途的生物材料类之一,因为它们适用于用针或导管的微创注射,并形成生物相容性的三维基质,作为当地的药物,用于当地交付。在这次迷你审查中,我们通过强调一些最近的例子,概述了在局部癌症免疫疗法中应用可注射的宏观生物材料的最新进步。我们将各种可注射的生物材料与不同的凝胶化机制进行了比较,并讨论了它们在免疫调节剂,免疫细胞和癌症疫苗的应用中的应用。我们还讨论了当前的挑战,并为癌症免疫疗法中可注射的宏观生物材料的未来发展提供了观点。
Solvay是一家科学公司,其技术为日常生活的许多方面带来了好处。在64个国家 /地区拥有超过23,000名员工,债务人,想法和要素可以重塑进步。该小组试图为所有人创造可持续的共享价值,特别是通过其Solvay One Planet路线图围绕三个支柱制作:保护气候,保护资源并促进更好的生活。该集团的创新解决方案有助于在房屋,食品和消费品,飞机,汽车,电池,智能设备,医疗保健应用,水和空气净化系统中发现的更安全,清洁剂和更可持续的产品。成立于1863年,今天的Solvay在其绝大多数活动中排名全球前三家公司,并在2020年提供了90亿欧元的净销售额。solvay在布鲁塞尔和巴黎(Solb)上列出。在www.solvay.com上了解更多信息。
在半导体和高级材料行业中需要使用非接触式和非毁灭性工具,以表征散装,薄膜和2D材料的电气性能。
单层石墨烯(SLG)(Novoselov等,2004)可以使用显微镜(如果放置在Si+SiO 2厚度100 nm或300 nm上)(Casiraghi等,2007a)。SIO 2层充当光的腔,并根据其厚度导致建设性或破坏性干扰(Casiraghi等,2007a)。图1显示了计算出的光学对比度作为激光波长和SIO 2厚度的函数,对比度最大值在100和300 nm厚度,对于450至600 nm之间的常用激光波长。虽然通过光学对比进行成像可以使其厚度有一个了解,但它不足以获取更多的定量信息,例如掺杂,混乱,应变等。拉曼光谱镜通常是一种强大的特征技术,通常是碳,范围从富勒烯,纳米管,石墨碳到无定形和类似钻石的碳(Ferrari and Robertson,2000; Tuinsstra and Koenig and Koenig,1970; 1970; Fresselhaus et al。在石墨烯中,拉曼光谱现在可以通常用于提取层n的层数,以估计掺杂和应变的类型和数量,以及检查石墨烯的质量,因为这种光谱技术对缺陷也很敏感(Ferrari和Basko,2013年)。
卫生科学系 +技术部,HPL J 22,Otto-stern-Weg 7,8093ZürichSwitzerland电子邮件:Marcy.zenobi@hest.hest.hest.ethz.ch.ch.ch.ch.ch.ch.ch关键词:Microgels,Microgels,Bioinks,生物学,挤出生物插入,cartilage,Cartilage,Tissue Engineering Whycres and Mimalian Mimalian Mimalian Mimalian Mimalian Mimalian diverric
