人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
摘要 用户对人工智能 (AI) 系统的信任已越来越多地得到认可,并被证明是促进采用的关键要素。有人提出,人工智能系统必须超越以技术为中心的方法,走向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本综述旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。重点应该是选择最合适的信任定义来描述特定环境中的用户信任,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了用户参与从开发到监控人工智能系统的重要性。研究还发现,不同环境以及用户和系统的各种特征都会影响用户信任,这凸显了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论人工智能系统的每一个环境中,都需要直接解决用户信任问题。此外,校准用户与人工智能的关系需要找到不仅对用户而且对系统都适用的最佳平衡点。
本课程通常允许使用人工智能技术(如 ChatGPT),但与任何其他来源一样,必须始终以读者可复制的方式注明出处。此外,此类写作辅助工具可以在创作过程的不同阶段以不同的方式使用。因此,如果您使用任何这些系统来支持您的工作(作业明确允许),您将需要描述其用途和过程。请记住,当使用生成式人工智能技术作为信息来源时,您有责任评估所引用信息的质量、完整性和准确性。
简介:慢性心力衰竭导致许多患者住院,尤其是那些年老且不遵守治疗 1 的患者。这种住院通常可以通过前几周体重增加 2 和外周水肿增加来预测。对于不遵守每日体重记录的患者,我们假设从零依从性全自动远程监控解决方案中收集可靠的数据以评估外周水肿将减少住院并改善护理。
根据 2016/679 号条例 (EU) 第 13 和 14 条规定的视频监控信息,Sicilbanca Credito Cooperativo Italiano - Società Cooperativa(注册办事处位于卡尔塔尼塞塔 Via Francesco Crispi 25,CF 01438930859 PI 02529020220,卡尔塔尼塞塔公司注册号为 70559)(以下简称“公司”或“所有者”)希望通过本文件(“信息”)向您告知处理您的个人数据的目的和方法,以及 2016/679 号条例 (EU) 关于保护自然人、处理个人数据及其自由流通(“GDPR”)赋予您的权利。 1 与视频监控相关的处理目的 数据控制者可能会处理与场所内进行的视频录制相关的您的个人数据。通过视频监控手段获取的个人数据的处理旨在保护客户、公司人员和访问这些数据的个人的安全,以及保护公司资产免遭可能的侵犯、盗窃、抢劫或破坏行为。使用摄像机的法律基础是合法利益。摄像机的放置位置将拍摄范围限制在可能受到公司组织外部个人的非法或其他有害行为风险的区域。在某些情况下,所检测到的图像会被记录并存储一段时间,以达到上述目的,并且在任何情况下,存储时间不超过一周,除非担保人关于保护个人数据的适用规定允许更长的期限,或者可能需要满足司法机关或司法警察对正在进行的调查活动的具体要求。在预期的保留期结束时,记录的图像将从相关的电子、计算机或磁性媒体中删除。检测和记录是在不拦截通信或对话的情况下进行的,并且不会将图像与可以识别相关方的其他元素交织在一起。进入数据控制者的场所需要强制对相关方进行视频记录。反对执行拍摄将导致公司无法跟进您的合同前/合同中的要求。 2 视频录像传输的对象(接收者) 录制的图像存储在电子或磁性媒体上,只能由公司专门指定的人员和外部公司进行处理,作为数据控制者,他们合作维护系统并开展私人监视活动: - Zabut investigazioni di Gulotta Matteo,总部位于 Sambuca di Sicilia via Mulè c.le Salvato n.6。 - 2858 Security srl,注册办事处位于 Misterbianco (ct) via Carlo Marx 57。 - Secur Point srl,注册办事处位于 S. Cataldo (cl), via E. Tricomi 11。 - OSTI di Vincenzo Uricolo,注册办事处位于 S. Margherita di Belice (ag),partment 156 lot 8。根据司法机关或司法警察的命令,图像还会在数据控制者结构之外进行传达和传播。 3 利益相关方的权利 关于本通知中描述的处理,作为利益相关方,您可以
2.2. 价值................................................................................................................................................ 18
决策算法在社会中的存在感如今正在迅速增加,同时人们也开始担心其透明度以及这些算法可能成为新的歧视来源。事实上,许多相关的自动化系统已被证明会根据敏感信息做出决策或歧视某些社会群体(例如,某些用于人员识别的生物特征识别系统)。为了研究当前基于异构信息源的多模态算法如何受到数据中的敏感元素和内部偏见的影响,我们提出了一个虚构的自动招聘测试平台:FairCVtest。我们使用一组有意识地以性别和种族偏见进行评分的多模态合成档案来训练自动招聘算法。FairCVtest 展示了此类招聘工具背后的人工智能(AI)从非结构化数据中提取敏感信息并以不良(不公平)的方式将其与数据偏见结合起来的能力。最后,我们列出了最近开发能够从深度学习架构的决策过程中删除敏感信息的技术的列表。我们使用其中一种算法(SensitiveNets)来实验歧视感知学习,以消除我们多模态 AI 框架中的敏感信息。我们的方法和结果展示了如何生成更公平的基于 AI 的工具,特别是更公平的自动招聘系统。
系统和 AI 代理可以使用合成语音进行响应。文本是 AI 代理响应查询并生成文本回复时的内容。聊天类似于文本,但它通常代表用户和计算机之间近乎实时的大量短消息交换。当今使用的对话式 AI 系统的一些最著名的例子是数字助理,例如 Amazon Alexa、Apple Siri、Google Assistant 和 IBM Watson。
本研究基于定量和定性分析方法构建的方法论框架,遵循 Pickering 和 Byrne (2014) 提出的步骤,进行系统的文献综述和文献收集设计,重点分析人工智能 (AI) 时代高等教育的想象未来。我们的研究旨在回答以下研究问题:(1)人工智能时代高等教育的想象未来是什么?(2)哪些因素影响高等教育教学过程与人工智能之间的联系?(3)学生和教师改进数据库和开发 ChatGPT 会产生什么影响?作者探讨了人工智能在西方世界当前大学治理安排和精神背景下的影响。深入分析与人工智能系统的出现相关的一些已确定的主要挑战、机遇和风险相一致,例如技术监控或学术界对人工智能和大型语言模型(如 ChatGPT)的普遍访问,并提出了在高等教育中明智地选择和使用人工智能解决方案进行学习和教学的论据。本研究采用的分析框架还用于总结该领域研究的新方向,以恢复大学的主导地位,提高学生、学者和公众的高等教育质量。
