土地覆盖和土地利用的监测和评估在自然资源管理中至关重要。遥感数据和图像处理技术已广泛应用于城市和农村地区的土地描述和变化检测。关于土地利用或土地覆盖的详细信息是各个领域的宝贵信息来源,例如城市规划[30,43]、变化检测[17]、植被监测[2],甚至军事侦察。土地覆盖变化是环境变化[38,37]、森林覆盖动态[32]和退化[21]的指标,也是生物多样性监测的方法之一[31]。此类数据可用于研究景观中发生的过程,例如各种土地覆盖之间的流动 [ 16 ],从而可以研究城市化、森林砍伐、农业强度和其他人为变化的速度。
对准确的3D手姿势估计的追求是理解以自我为中心视力领域的人类活动的基石。大多数现有估计方法仍然依赖单视图像作为输入,从而导致潜在的局限性,例如,深度有限的视野和义务。解决这些问题,添加另一个相机以更好地捕获手的形状是实践方向。然而,现有的多视图手姿势姿势方法具有两个主要缺点:1)重新训练的多视图注释,这些注释是备用的。2)在测试过程中,如果相机参数/布局与训练中使用的相同,则模型将变为inpapplicable。在本文中,我们提出了一种新颖的单算观看改编(S2DHAND)解决方案,该解决方案将预先训练的单视估计器适应双视图。与现有的多视图训练方法相比,1)我们的适应过程是无监督的,消除了对多视图注释的需求。2)此外,我们的方法可以处理带有未知相机参数的Arbitarary双视图对,从而使该模型适用于不同的相机设置。具体来说,S2DHAND建立在某些立体声约束上,包括两种视图之间的成对跨视图共识和转换的不变性。这两个立体声约束以互补的方式使用来进行伪标记,从而允许可靠的适应性。评估结果表明,在内部和跨数据库设置下,S2DHAND在任意摄像机对上实现了重大的实现,并且胜过具有领先性能的现有适应方法。项目页面:https://github.com/ut-vision/s2dhand。
事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
法律规定的巴基斯坦高等教育委员会(HEC)为高等教育机构(HEI)提供指导,以与国家资格式框架(NQF)保持一致的高等教育水平。为了满足不断发展的学术趋势和市场需求,HEC修改了NQF级别5、6和7的数学学位课程的课程标准。这些更新的标准与HEC的本科教育政策第1(2023年)和研究生教育政策(2023年)都具有一致性,从而确保了与国家优先事项并遵守国际基准。2。特此通知了修订的数学学位课程。提供这些课程的大学建议将其数学课程与这些更新的标准保持一致,这是最低要求。各个部门还必须根据规定的框架开发课程内容,以确保该计划应对不断发展的学术和行业需要提高数学毕业生的就业潜力。随后,最终的课程内容应尽早以电子方式提交给该办公室。修订课程的电子副本可在HEC的官方网站上找到。3。在大学实施这些标准方面的支持下,HEC设想了一个未来,巴基斯坦在数学领域毕业,在数学研究,计算科学,数据分析,财务建模和应用数学,在工程,经济学,经济学,艺术知识和科学计算等领域的跨学科进步中,领导了数学研究,数据分析,财务建模和应用数学的创新。
摘要在计算组织病理学领域,计算机辅助诊断系统对于获得各种疾病的患者诊断和有助于精确医学很重要。因此,已经报道了许多关于数字病理图像的自动分析方法的研究。在这项工作中,我们讨论了一种自动提取和疾病阶段分类方法多形胶质母细胞瘤(GBM)组织病理学图像。在本文中,我们使用深层卷发神经网络(深CNN)同时获取功能描述符和分类方案。此外,在这个充满挑战的分类问题中,与其他流行的CNN进行了客观和定量的比较。使用癌症基因组图像的胶质瘤图像的实验表明,我们的网络平均分类准确性为96:5%,而对于更高的交叉验证,其他网络的性能相似,较高的精度为98:0%。深CNN可以以高精度从GBM组织病理学图像中提取显着特征。总的来说,具有深CNN的组织病理学图像的GBM疾病阶段分类非常有前途,并且在大规模组织病理学图像数据的可用性中,深CNN非常适合解决这个挑战性问题。
通常可以在未经事先许可或指控的情况下以任何格式或媒介进行个人研究或研究,教育或非营利性目的以任何格式或媒介的第三方复制,显示或执行全文项目的副本。
政府总支出及其代表国内生产总值(GDP)的百分比通常被视为政府足迹的规模及其参与经济的量度。低百分比反映出政府通过财政工具影响经济的能力有限,而低利率通常被认为是政府采取积极的税收政策来建立其财务肌肉的主要原因。在巴基斯坦,总政府的支出为GDP的百分比约为22%。许多季度,包括多边捐助者机构,一直呼吁政府通过提高其税率和/或增加该国的总纳税申报人数量来增加其税收收入能力,因为政府始终处于赤字状态。巴基斯坦的税收制度问题是一个单独的问题,多年来通过其他各种PIDE出版物进行了讨论。1