精确医学黑客马拉松 - 美国所有人的数据工程2024年10月●与团队合作开发乳腺癌风险的预测性线性回归模型●进行了深入研究,并创建了一个全面的项目计划,以实施融资数据库2024年5月 - 2024年5月 - 2024年7月 - 2024年7月,使用MySQL分析型数据库●提供了潜在的数据库●提供了潜在的数据库,并提供了我的SSQL分析数据库●数字分类2024年2月●在MNIST数字数据上,使用Keras,Numpy和Matplotlib构建了Python图像分类模型●从4x4中心的图像中提取的特征,用于数字分类●通过阈值进行分类●通过阈值进行分类,可实现使用训练,验证和测试精确的语言和Micrountion Emoprocess和Microunty Novermunt和Mictuly Novermuntion和Microunty NOVEMERDEMENBLY NOVEMED和MICTUCTY NOVEMERAMER EMOPORED● EMU8086中的ASM-86汇编代码使用VMware●翻译和分析的汇编指令到机器代码中以监视寄存器更改●修改了与硬件交互的修改代码,包括显示输出和内存地址
摘要该项目的主要目的是检测车辆的数字并显示相应的车辆号码。该项目的动机源于需要在现实世界中有效执行的可靠数字检测系统。现有技术经常难以应对不同的照明情况,例如昏暗的区域,这可能会导致错误或错过的检测。此外,数字板的不利角度可能会使检测问题更糟。该项目的问题陈述是开发一个数字板检测系统,该系统能够在车辆上准确定位数字板,而与盛行的环境条件无关。为了实现这一目标,我们采用了一种多阶段方法,将计算机视觉技术和图像处理方法结合在一起。我们提出的方法包括三个阶段,其中包括:预处理,特征提取和文本提取关键字:机器学习,计算机视觉,图像处理,特征提取。1。简介该项目旨在开发一个能够在不同环境条件下进行准确操作的强大车辆板检测系统。将采用高级图像处理技术来应对诸如不同照明,不同角度和车速的挑战。该系统的成功实施具有改善交通管理,执法和智能运输系统的潜力。2。通过增强数字检测功能,该项目旨在为更安全的道路和更有效的运输系统做出贡献,从而使其成为依靠准确可靠的车辆识别的各个领域的资产。该项目的任务区域侧重于在车辆上的检测和定位,涉及使用图像处理技术,并涉及处理具有挑战性的环境因素,包括不同的照明条件,不同的车辆速度和不同角度的数字板。采用高级图像处理方法,例如边缘检测,自适应阈值和轮廓分析,即使在不利条件下,该系统也能够准确提取数字板。为了评估上述任务,我们使用了包括CV2,Numpy,Py Tesseract和Matplotlib在内的不同模块,其中CV2提供了处理和操纵图像的功能,Numpy提供了对多维阵列和数学功能的支持,用于在阵列上使用阵列,Py Tesseract,Py Tesseract用于读取文本和Matplotlib的可视化度。问题陈述车辆数板检测系统的当前状态揭示了阻碍其
印度安得拉邦。摘要:该项目是关于开发带有人工智能的吃豆人游戏。吃豆人游戏是一款非常具有挑战性的视频游戏,可用于进行人工智能研究。在这里,我们为吃豆人游戏实施各种人工智能算法的原因是,它有助于我们通过使用可视化来研究人工智能,通过可视化我们可以更有效地理解人工智能。主要目的是构建一个智能吃豆人代理,该代理可以通过迷宫找到最佳路径以找到特定目标,例如特定的食物位置,逃离鬼魂。为此,我们实施了人工智能搜索算法,例如深度优先搜索、广度优先搜索、A*搜索、均匀成本搜索。我们还实施了多代理,例如反射代理、极小最大代理、Alpha-beta 代理。通过这些多代理算法,我们可以让吃豆人根据其环境条件做出反应并逃离鬼魂以获得高分。我们还完成了上述人工智能算法的可视化部分,任何人都可以轻松学习和理解人工智能算法。为了实现算法的可视化,我们使用了 Python 库 matplotlib 和 NetworkX(用于绘制所探索状态的图形)。
机器学习简介。必需图书馆和工具(Scipy,Numpy,Pandas,Graphviz,Seaborn,Matplotlib软件包)。学习类型 - 受监督和无监督的学习。问题类型 - 回归,分类和聚类;机器学习的应用。讨论关键概念,例如成本函数,优化 - 梯度下降算法。采样,决策界限,模型不合适和过度拟合以及偏见变化权衡,成本敏感模型,电感偏见。贝叶斯学习:概率的基础,贝叶斯规则,生成与判别模型,贝叶斯规则 - 参数估计,最大似然。监督学习:解决回归问题 - 线性回归,正则化 - 脊和拉索。解决分类问题 - 逻辑回归,SVM,决策树。合奏 - 决策森林,包装和增强。无监督的学习:聚类-DBSCAN和桦木。异常检测 - 密度估计。加强学习简介。通过主成分分析缩小维度,内核主成分分析。人工神经网络简介。模型验证和选择:准确性,置信区间,混淆矩阵,精度,召回和其他指标,超参数调整,交叉验证,引导程序和ROC曲线,R平方等等。模型部署 - 在基于云的服务器中部署机器学习模型。
9. 在图上绘制 x 和 y 点数组。10. 在图上使用不同类型的标记和线条样式。11. 声明轴的标签。(绘制售价和原价)。12. 绘制条形图 - 使用最畅销书数据集绘制年度数据,并找出多年来最畅销的类型。13. 绘制直方图 - 使用前 200 名 YouTube 用户的数据集进行绘制,并找出最受欢迎的类型。还可以使用直方图绘制每个类型的关注者。14. 回归作业(预测未来) - 绘制年份和平均气温之间的关系。你能预测未来几年的平均气温吗?你从趋势中推断出什么?15. 创建正态分布并在图形中显示(使用 Numpy + Matplotlib) - 在图中显示学生的分数并检查它是否是正态分布?这些数据的平均值、中位数和众数是什么? 16. 编写一个 Python 程序来计算电费。接受用户的上一次电表读数和当前电表读数以及每单位电费。计算用户的单位数和总账单消耗量。17. 一家公司决定给员工 5% 的奖金,如果员工的服务年限超过 5 年。编写一个 Python 程序来询问用户的工资和服务年限,并打印净奖金金额。
欢迎来到 IITK Python 和 QISKIT 数据科学 (DS)、数据分析 (DA)、机器学习 (ML) 和量子计算 (QC) 证书课程。数据科学为学生/专业人士提供了一些最有前途的职业机会,数据分析技能受到行业的高度追捧。结合机器学习从数据中学习和量子计算利用量子力学原理,这些领域将彻底改变商业、信息处理和机器智能。这所前沿学校将向参与者介绍严谨的理论、算法和科学方法,通过数据分析、机器学习和量子计算的尖端算法从大数据集中获得可操作的见解。该学校还包括大量辅助 PYTHON/QISKIT 编程项目,参与者将使用实际数据集和最新的 PYTHON 包(如 NUMPY、LINALG、MATPLOTLIB、PANDAS、SEABORN、SCIKIT-LEARN 和 QISKIT)获得数据分析、探索和可视化方面的实践经验。学校还包括解决问题的课程,为 DS、DA、ML 和 QC 中的测试/工作面试做准备。本课程的优势: • 学习 PYTHON/QISKIT 中最新的编程技术,在实习中获得无与伦比的优势 • 使用 PYTHON/QISKIT 和各种软件包建立虚拟实验室或进行项目指导 • 通过学习 PYTHON/QISKIT 和各种软件包和实用数据集,将您的技能提升到新的水平 • 学习 PYTHON/QISKIT 编程以掌握最新的 DS、DA、ML 和 QC 技术 目标受众 • B.Tech/BE/B.Sc/BBA/BCA 学生 • M.Tech/ME/M.Sc/MBA/MCA 学生 • 攻读研究的博士学者 • 工程/科学/管理学院 • 来自工业和研发组织的专业人士
S. No.主题 1 人工智能 (AI) 简介:人工智能的简介、发展和历史、各种应用领域(医疗保健、监控、分析和网络安全等。)、科学应用、机器学习 (ML) 和深度学习 (DL) 简介、AI、ML 和 DL 之间的区别、基于规则的系统、智能代理、优化问题。2 人工智能的 Python 编程:简介、数据类型、变量、运算符、输入和输出操作;环境设置、控制流 - 决策控制、循环语句等。;数据结构 - 列表、元组、字符串、字典、集合;函数式编程 - 函数类型、递归函数、Lambda 函数、模块和包; OOPs 概念、异常处理、Python 库 - numPy、matplotlib、pandas、scipy、seaborn 等。3 人工智能数学:线性代数 - 向量、标量、矩阵和矩阵运算;概率 - 基础、抽样、条件概率、相关和独立事件;统计学基础 - 集中趋势和方差的测量、概率分布(正态、二项式、泊松)、抽样理论、相关性、回归、异常值 4 数据准备和可视化:数据准备、数据预处理、特征工程 - 特征选择技术、特征优化、降维(主成分分析)、数据清理和转换、数据验证和建模;数据可视化 – 使用 Python 库的各种数据图(箱线图、散点图、2D 和 3D 图、时间序列图、直方图等)5 机器学习:机器学习基础、类型 – 监督、无监督和强化学习、机器学习的应用;分类算法 – 线性和逻辑回归(梯度下降、损失函数、交叉熵)、支持向量机、朴素贝叶斯分类器、决策树、随机森林;聚类算法 – k 均值、模型评估 – 欠拟合与过拟合、混淆矩阵、ROC、精度、召回率、F1、F2、偏差和方差。6 深度学习:简介、历史、生物神经元基础知识、多层感知器 (MLP)、反向传播、人工神经网络 - 卷积神经网络 (CNN)、RNN、LSTM、使用 Tensorflow 的 Keras 神经网络模型、迁移学习。6 人工智能的应用:文本分析 - 概述、文本处理(语法、解析和词干提取)、语义和句法分析、信息检索、图像/视频处理 - 人脸识别、对象分类。聊天机器人的实现。7 项目工作
人类神经科学使用磁共振成像(MRI)来了解大脑的结构和功能并表征某些神经系统和精神疾病。最近已经建立了大型成像队列,其中包括一千个(人类连接项目,Abide,Adni,Imagen,Eu-Aims,1000brains,abcd),向十万个人(Enigma Consortium,UK BiobAbank)。这种同类群是研究流行病学研究(UK Biobank)中许多脑部病理(精神病,成瘾,神经退行性疾病)或危险因素的影响所必需的。相应的数据通常可公开可用。除了这些大型研究外,还获得了较小的数据集,并且在认知神经科学的背景下,越来越频繁地公开(https://openneuro.org)。所有这些研究的数据分析需要医学图像处理工具,而且越来越多的统计分析和学习工具。大脑成像社区已经开发了标准,即大脑成像数据结构(BIDS)(1),以组织数据并促进大规模的统计分析。在此框架中,思维对神经影像学中的统计学习产生了许多贡献,对监督学习,基于模拟的推论和协方差模型估计的兴趣非常兴趣。这些贡献的一部分是通过NiLearn库(http://nilearn.github.io)传播的(2)。niLearn是神经科学生态系统中的关键开源库,它依赖于科学的Python stack(Numpy,Scikit-Learn,Matplotlib)。它非常成功(PYPI上下载50 K)。Nilearn由来自几个国家的许多人贡献,请参见https://github.com/nilearn/nilearn/graphs/contributors。它遵循软件开发方面的最佳实践(详尽的自动化测试,CI,完整的API文档以及叙事文档,API同质性,合理的依赖性,有关技术选择的公开讨论等)该开发由Coredev团队管理,有9个每月开会的成员。开发人员社区非常活跃,因为它在神经频道(Neurostars)等公共渠道上提供了反馈,在GitHub界面上打开问题并提取请求。最后,Mind正在将大量资源投资于临床合作。Specifically, Mind is engaged in a collaborative initiative with the Assistance Publique - Hopitaux de Paris (AP-HP), Institut Pasteur, Sainte Anne, Stanford University and Neurospin, to address clinical scenarios such as brain tumor surgeries, analysis of stroke-induced lesions ( 3 ; 4 ), understand the relationship between brain structure and cognition, or the use of ultra-high field MRI.
在孟加拉国生长了许多不同种类的香料。在这些香料中,大蒜是最重要的。尽管每年需要600,000吨大蒜,但孟加拉国仅设法生产约80,000公吨的香料[1]。根据政府的报道,其余部分主要来自印度和中国。每一天都会发现对大蒜的需求有所上升。因此,由于没有足够的供应来满足需求,价格就会更高。诸如孟加拉国农业部报道的2018年的大蒜在2018年的五十至八十塔卡。2019年对大蒜的需求激增。但是,大蒜供应没有变化。价格从2024年到250。以大蒜为例; 2019年1月1日,价格为每公斤80塔卡,但到7月14日,每公斤升至180塔卡。由于其异常行为,因此对这种变化有很大的关注。定价范围表明,增加和减少是零星的。孟加拉国贫穷的人无法承担这笔费用。数据不确定性的非结构化特征为财务预测增加了复杂性。的预测进一步混淆了这样一个事实,即天气,劳动力,储存量,运输和供求比等变量会影响结果。现代AI允许机器模仿人类的行为。使用多种ML算法,M。M。Hasan等。[2]成功消除了洋葱市场的波动,并预测了未来的洋葱价格。在金融中应用机器学习的可能性很大。为了实现这一目标,我们采用了有关大蒜价格的收集数据,我们开发了一些能够预测未来大蒜价格的ML和DL模型。如Geron等人[3]所观察到的,只有一些可用的机器学习工具包括Scikit-Learn,Tensorflow,Matplotlib,Pandas和Numpy。为了使用我们的数据集,使用各种功能选择和特征提取算法。对于第一个模型,使用了DNN。对于第二和第三模型,使用的模型类型是长期记忆(LSTM)模型。最后,第四型模型是LSTM和ML的组合结构,其中LSTM部分仅用于选择特征,而ML算法(如梯度增强回归(GBR),随机森林回归(RFR),线性回归(LR)(LR)都用于训练功能。由于我们将为大蒜每日价格产生预测,因此我们对此进行了监督的学习。根据大蒜市场的给定ML和DL模型,可以在不同来源预测该产品的价格。我们的工作集中在这一目标上。