本文介绍了构建一组矩阵的方法和数据来源,这些矩阵映射了跨国企业 (MNEs) 在不同司法管辖区之间的利润和经济活动位置。这些矩阵最初是为了评估经合组织/G20 税基侵蚀和利润转移 (BEPS) 包容性框架正在考虑的国际企业税收安排改革提案的影响而设计的。它们将来还可以用于其他分析目的。该组矩阵包括一个利润矩阵和三个侧重于经济活动指标(营业额、有形资产和工资单)的矩阵。每个矩阵包含的数据涵盖 200 多个司法管辖区(矩阵行),并细分为跨国企业最终母公司 200 多个司法管辖区(矩阵列),主要关注 2016 年。这些矩阵将来自各种来源的数据结合在一个一致的框架中,包括新获得的汇总国别报告 (CbCR) 数据、ORBIS 数据库和经合组织分析性 AMNE 数据库。数据空白通过基于宏观经济数据的推断来填补,包括通过复杂的程序根据外国直接投资 (FDI) 数据推断利润。已进行了广泛的基准测试,以确保矩阵中使用的数据源和推断之间的一致性。
简介。动力学系统理论描述了通过系统的吸引子进行长期复发行为:动态不变的集合。说,系统空间的区域(点,曲线,光滑的歧管或分形)反复访问。这些对象由运动的基本方程及其支持的概率分布(Sinai-Bowen-Ruelle(SRB)测量)隐式确定,这被解释为热力学宏观植物的类似物[1,2]。这是经典统计力学的基础。在此基础上,以下介绍了旨在研究量子系统类似至关重要的状态空间结构的工具。这需要开发一个更基本的“量子系统状态”的概念,这实质上超越了密度矩阵的标准概念;尽管它们可以直接恢复。我们将这些对象称为系统的几何量子状态,并平行于SRB测量,它们是通过纯量子状态空间上的概率分布来指定的。量子力学是在状态| ψ⟩是复杂的希尔伯特空间h的元素。这些是系统的纯状态。为了解决更普遍的情况,人们采用密度矩阵ρ。这些是h中的运算符,它们为正半限定ρ≥0,自动偶会ρ=ρ†,并且归一化的trρ=1。合奏理论[3,4]给出了对密度矩阵为系统概率状态的解释。,因为密度矩阵总是分解为特征值λI和特征向量| λi⟩:
电子邮件:a.mohammadi@ipm.ir†瑞士EthZéurich组合算法理论。电子邮件:phamanhthang.vnu@gmail.com•瑞士EthZéurich计算机科学系。电子邮件:yitwang@student.ethz.ch
Guillaume Aubrun和StanisławSzarek,Alice and Bob Meet Banach:渐近几何分析和量子信息理论的界面,剑桥,2019年。
我们研究低秩相位恢复问题,我们的目标是从一系列无相位线性测量中恢复 ad 1 × d 2 低秩矩阵。这是一个四阶逆问题,因为我们试图恢复通过一些二次测量间接观察到的矩阵因子。我们提出了使用最近引入的锚定回归技术解决该问题的方法。这种方法使用两种不同类型的凸松弛:我们用多面体搜索代替无相位测量的二次等式约束,并通过核范数正则化强制执行秩约束。结果是 d 1 × d 2 矩阵空间中的凸程序。我们分析了两种特定场景。在第一种情况下,目标矩阵为秩 1,观测结构对应于无相位盲反卷积。在第二种情况下,目标矩阵具有一般秩,我们观察一系列独立高斯随机矩阵的内积幅度。在每个问题中,我们都表明,只要我们能够访问质量足够好的锚定矩阵,锚定回归就能从接近最优数量的测量中返回准确的估计值。我们还展示了如何在无相盲反卷积问题中从最优数量的测量中创建这样的锚定,并针对一般秩问题给出了这方面的部分结果。
我们设计了一种通过相空间分布相关性来认证非经典特征的方法,该方法统一了准概率和相关函数矩阵的概念。我们的方法补充并扩展了基于切比雪夫积分不等式的最新结果 [Phys. Rev. Lett. 124, 133601 (2020)]。这里开发的方法在相空间中的任意点关联任意相空间函数,包括多模场景和高阶相关性。此外,我们的方法提供了必要和充分的非经典性标准,适用于 s 参数化函数以外的相空间函数,并且可以在实验中使用。为了证明我们技术的强大功能,我们仅使用二阶相关和 Husimi 函数来验证离散和连续变量、单模和多模以及纯态和混合态的量子特性,这些函数始终类似于经典概率分布。此外,我们还研究了我们方法的非线性推广。因此,我们设计了一个通用且广泛适用的框架,以揭示相空间分布矩阵中的量子特性。
2. 证明这意味着如果我们测量任意方向的自旋 ⃗v , | ⃗v | = 1 – 这个测量可以用测量算子 S ⃗v = P 3 i =1 vi σ i 来描述 – 我们得到完全随机和相反的结果。(提示:一种优雅的方法是首先证明任何 S ⃗v 都具有与 Z 矩阵相同的特征值,因此可以旋转到它,即存在一个 U ⃗v s.th. U ⃗v S ⃗v U † ⃗v = Z 。)
我们报告了针对单和双量子比特偏振态的光子集合的量子态断层扫描的实验实现。我们的实现基于 James、Kwiat、Munro 和 White [ 1 ] 的工作,他们基于局部投影测量提供了良好的断层扫描重建。我们描述了从激光源制备的单量子比特态的理论和实验断层扫描测量,并展示了三个正交基的密度矩阵的断层扫描重建。此外,我们还描述了在下转换实验中产生的一对纠缠光子的两个偏振自由度的量子态断层扫描的理论和实验实现。讨论了两种不同的技术:一种是线性重建,其中密度矩阵由巧合测量构建,但可能会产生非物理密度矩阵,另一种是最大似然估计技术,可产生物理密度矩阵。最后,我们还讨论了 II 型 BBO 晶体中下转换光子的时间补偿及其对 2 量子比特态断层重建的影响,并给出了 SPDC 源的密度矩阵的断层重建。
双射线性算子 φ : M n → M n 将奇异矩阵集映射到其自身当且仅当存在可逆 U, V ∈ M n 使得 φ 具有以下形式