结肠腺癌(COAD)是第三常见的癌症,是全球癌症死亡的第二大主要原因,这已成为全球公共卫生挑战(1)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。 开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。 近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。 因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。 细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。 ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。 临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。 最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。 ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。此外,ECM的高密度阻碍了免疫细胞的内化,这会影响肿瘤免疫疗法的作用(16-18)。因此,基于与ECM相关基因的预后模型将为预测COAD患者的复发提供基础。瘦素是瘦素基因(LEP)的糖蛋白产物。流行病学研究支持LEP与COAD风险增加有关(19)。研究表明,COAD组织中LEP mRNA的表达水平上调,这与COAD患者的预后不良有关(20,21)。周围神经形成复杂的肿瘤微环境,由多种细胞类型和因子组成,包括神经生长因子(NGF)。NGF在几种实体瘤的生长,侵袭和转移中起重要作用。Lei等。 发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。 Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Lei等。发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Hayakawa等。表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。他等人。证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床在这项研究中,我们鉴定了与WGCNA和Lasso-Cox回归相关的三个与ECM相关的基因(LEP,NGF和PCOLCE2)。
2。座椅矩阵已在政府之后准备。西孟加拉通函号 365-EDN(CS)/OM-9L/2015年2015年4月21日,西孟加拉邦高等教育(录取保留)规则,2013年(视频通知号 07- EDN(U)/1U-89/13日期为2014年1月1日)和Gazatte Memorandum 339-EDN(CS)/OM-74L/2023,日期为26.05.2023西孟加拉通函号365-EDN(CS)/OM-9L/2015年2015年4月21日,西孟加拉邦高等教育(录取保留)规则,2013年(视频通知号07- EDN(U)/1U-89/13日期为2014年1月1日)和Gazatte Memorandum 339-EDN(CS)/OM-74L/2023,日期为26.05.2023
1。关键术语和定义。2。选定的元素(名称为符号)。3。选定的化合物(姓名公式)。4。选定的化合物(名称为公式)。5。识别离子(姓名公式)。6。选定的元素(名称为符号)。7。编写元素名称。8。编写元素符号。9。从定义中标识关键术语。7。修订课
胶原蛋白是哺乳动物中最丰富的蛋白质,广泛表达于组织器官和肿瘤细胞外基质中。肿瘤胶原主要聚集在肿瘤基质或肿瘤血管内皮下,由于肿瘤血管的结构破碎,肿瘤胶原暴露在外。通过血管的通透性和滞留性(EPR)效应,胶原结合大分子容易与肿瘤胶原结合并在肿瘤内聚集,使得肿瘤胶原成为潜在的肿瘤特异性靶点。近年来,大量研究证实,靶向肿瘤细胞外基质(TEM)内的胶原可增强免疫治疗药物在肿瘤处的蓄积和滞留,显著提高其抗肿瘤疗效,并避免严重的不良反应。本文对已知的胶原结合结构域(CBD)或蛋白(CBP)、其作用机制及其在肿瘤靶向免疫治疗中的应用进行综述,并展望未来的发展。
现代密码学依赖于所谓的离散对数问题,尤其是在椭圆曲线上。然而,在1994年,提出了一种能够在多项式时间内解决此问题的量子算法。这是Quatum加密后的开始;在量子计算机的存在下,对新的加密协议的研究仍然是安全的。迷宫等。[11]引入了基于对集合的半群操作定义键交换协议的一般框架。他们的工作可以看作是在代数环境中的Di out-Hellman [12]和Elgamal [13]方案的概括。在其原始纸张中,他们提出了一个使用有限的简单半程的示例,该示例最近在[14]中进行了密码分析。然而,根据Maze等人的思想,已经制定了几种加密协议。例如,在[10]中,Kahrobaei和Koupparis探索了基于非交通群
Thierry Tran,FrançoisVerdier,Antoine Martin,HervéAlexandre,Cosette Grandvalet等。食品微生物学,2022,105,pp.104024。10.1016/j.fm.2022.104024。hal-03648386
摘要:纺织业是第二大水密集型行业,并产生了大量的废水。即使在较低的浓度下,纺织品废水中存在的染料和重金属也会对环境和人类健康造成不利影响。最近,由于纳米词/添加剂在聚合物基质中的掺入膜性能增强,混合基质膜引起了极大的关注。这项当前的研究研究了ZIF-8/Ca膜对去除染料的疗效和实时纺织业流出物的处理。最初,使用探针超声仪合成ZIF-8纳米颗粒。XRD,FT-IR和SEM分析证实了晶体和六角形ZIF-8纳米颗粒的形成。将ZIF-8纳米颗粒分散到乙酸纤维素基质中,并使用“相浸入法”制备膜。使用FT-IR和SEM分析对膜进行了表征,该分析认可ZIF-8在聚合物基质中的不体化。后来,通过染料去除研究验证了ZIF-8/Ca膜的功效。对晶体紫,酸红色和反应性黑色的染料去除研究表明,膜的去除效率约为85%,并且研究进一步扩展到实时纺织流出的处理。关于纺织流出物的研究盛行,ZIF-8/CA膜也熟练地消除了化学氧需求(COD)〜70%,总有机碳(TOC)〜80%,以及诸如铅,铬和含水量的重金属,以及从纺织废水中获得的含量,并且证明是对纺织品的效果。
细胞外基质蛋白水解在大脑发育过程中保持突触可塑性Haruna Nakajo 1,Ran Cao 1,上cao 1,uspriya A. Mula 1,Justin McKetney 2,3,4,Nicholas J. Silva 1,Muskaan Shah 1,Muskaan Shah 1,Indigo V. L. Indigo V. L. Rose 5,6,Martin Kampmann 5 awane l.2 l.7 swane l.7 6,8,9,10 Anna V.Molofsky 1,10 1精神病学和行为科学系/威尔神经科学研究所,加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州94158,美国。2 Gladstone数据科学与生物技术研究所,J。DavidGladstone Institutes,旧金山,94158,美国加利福尼亚州,美国3定量生物科学研究所(QBI),加利福尼亚旧金山,旧金山,旧金山大学,加利福尼亚州94158,美国加利福尼亚州94158,美国44158 94158,加利福尼亚,美国5神经退行性疾病研究所,威尔神经科学研究所,加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州94158,美国。6加州大学旧金山分校的Neuroscience研究生课程,美国加利福尼亚州94158,美国。 7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。 8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。6加州大学旧金山分校的Neuroscience研究生课程,美国加利福尼亚州94158,美国。7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。 8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。8加州大学旧金山分校的解剖系,美国CA94158,美国。9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。摘要维持动态神经元突触库对于大脑发育至关重要。小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。细胞外基质(ECM)通过仍在定义并主要在成年期进行研究的机制来调节突触可塑性。使用斑马鱼后脑中兴奋性突触的实时成像,我们观察到短期(动态)和寿命更长(稳定)突触的双峰分布。通过消化或Brevican缺失破坏ECM的动态动态而不是稳定的突触,并导致突触密度降低。相反,基质金属蛋白酶14(MMP14)的丧失导致Brevican的积累并增加了稳定的突触池,从而导致突触密度增加。在运动学习测定中依赖经验的突触可塑性所必需的MMP14和Brevican。通过数学建模补充,这些数据定义了ECM重塑在保持大脑发育过程中突触的动态子集中的重要作用。引言神经元突触数量在大脑发育过程中明显增加,并经历了长时间的经验依赖性精致,以塑造成人大脑功能1。在人类中,前额叶皮质突触在整个幼儿期间增加,随后在青春期进行修剪2,3,突触可塑性的改变与神经发育疾病有关4,5。细胞外基质(ECM)是糖和糖蛋白的晶格,填充了大脑的细胞外空间,最多占脑体积6的20%。ECM也是突触可塑性的关键调节剂7,8。这种观点的许多证据来自于成年后酶消化ECM的研究。这些发现ECM消化可以在9-11的皮质回路中重新打开可塑性,损害学习和记忆12,13,并促进
摘要 - 使用多模纤维用于越来越多的应用,例如光电信,内窥镜成像或激光束成型,这是一个上升趋势,这些应用需要了解纤维特性。在本文中,我们提出了一种新方法,用于从一组没有干涉测量的斑点输出模式中学习多模光纤的复杂传输矩阵。在第一步中,我们的方法找到了一个模型,可以预测多模纤维远端相干光束的强度模式。在第二步中,通过在远场中使用一些额外的强度图像来改进该模型,从而预测了实际的3D复合场,而无需使用参考光束,就可以预测离开多模纤维。我们的两步方法通过标准的50µm核直径踏板纤维在数值和实验上进行了验证,该纤维在1064nm时指导高达140 LP模式。在实验上,使用验证集,我们在近场和远场的纤维输出处获得了预测和真实斑点图像之间的相似性和98.5%的相似性,证明了检索到的复杂传输矩阵的准确性。最后,我们成功地在两个平面中同时证明了图像的投影,以证明复杂场塑造的证明。索引术语 - 机器学习,多模纤维,复杂传输矩阵,无参考方法,可变形镜
摘要 - 在本文中,我们研究了在通用量子游戏中学习的广泛使用矩阵乘量(MMW)动力学的平衡收敛性和稳定性。这项努力的一个关键困难是,诱导的量子状态动力学自然地分解为(i)经典的,可交换性的成分,该动态以类似于在经典复制器动力学下的混合策略的演化方式控制系统特征值的动力学; (ii)系统特征向量的非交通分量。这个非交通性的组件没有经典的对应物,因此需要引入(渐近)稳定性的新颖概念,以说明游戏量子空间的非线性几何形状。在这种一般情况下,我们表明(i)只有纯量子平衡才能稳定并在MMW动力学下吸引; (ii)作为部分匡威的纯量子状态,满足某种“变分稳定性”条件的纯量子总是会吸引。这使我们能够充分表征在MMW动力学下稳定并吸引的量子NASH平衡的结构,这一事实对预测多代理量子学习过程的结果具有重要意义。