细胞转录和表型对细胞转录和表型的表观遗传控制受到细胞微环境的变化的影响,但是这些微环境的机械提示如何精确影响表观遗传态来调节转录状态,这在很大程度上仍未覆盖。在这里,我们结合了基因组 - 表观基因组分析,表观基因组编辑以及表型和单细胞RNA-SEQ CRISPR筛选,以鉴定一类新的基因组增强剂,以对机械微环境做出反应。这些“机械性元素”可以在软体或僵硬的细胞外基质环境上活跃,并调节转录以影响关键细胞功能,包括凋亡,机械转导,增殖和迁移。在刚性材料上的机械性材料的表观遗传编辑将基因表达调整为在较软的材料上观察到的水平,从而重新编程了对机械微环境的细胞反应。这些编辑方法可以使机械驱动的疾病状态的精确改变。
废物铸造砂(WFS)是铸造行业的副产品,由于与垃圾填埋场维护和更严格的环境法规相关的成本,它构成了日益增加的经济和环境问题。这项研究提出了一种新的WFS作为热量储能的材料的新解决方案。该方法涉及将WFS与Nano 3和专有添加剂X混合以制造复合相变材料(CPCM)。CPCM在结构上稳定至400℃,并且质量比为Nano 3:WFS:X = 0.6:0.3:0.1。该组合物的能量存储密度为628±27 kJ/kg,在25 - 400°C的温度范围内,平均导热率为1.38 w/mk。与纳米3相比,CPCM也表现出良好的机械强度和较低的热膨胀系数。当前,只有一小部分WFS被回收,最常见于构建应用程序。这项研究中提出的CPCM有可能在废热恢复应用中进行中至高温储存,这是用于升级WFS的可持续解决方案。
量子计算被认为是量子化学概率的最终解决方案。在大规模,完全容忍的量子计算机出现之前,变量量子本质量(VQE)是一种有希望的启发式量子算法,可以解决现实世界中量子化学问题上的近期噪声量子计算机。在这里,我们基于量子状态的矩阵乘积状态表示,为VQE提供了高度可行的经典模拟器,该模拟态显着扩展了iS exting模拟器的模拟范围。我们的模拟器无缝地将量子电路演变为经典的自动差异框架,因此可以有效地计算梯度与经典的深神经网络有效地相似,该缩放的比例与变异参数的数量无关。作为应用,我们使用模拟器研究常用的小分子,例如HF,HCl,Lih和H 2 O,以及较大的分子CO 2,BEH 2和H 4,最多40量Qubit。我们的模拟器对量子数的数量的有利缩放和参数的数量可以使其成为近期量子算法的理想测试场,并且是噪声量子计算机上迎接大型大规模VQE Excorments的完美基准基线。
美国环境保护署 (EPA) 认识到在受污染土地上安置可再生能源项目的整体环境效益。EPA 的“RE-Powering America's Land Initiative”跟踪了以前受污染的土地、垃圾填埋场和矿场中的可再生能源项目,以教育利益相关者并鼓励未来的场地开发。1 本出版物包括有关地热、生物质、太阳能和风能装置的信息。EPA 汇编了以下与在受污染土地上成功开发的可再生能源装置的类型和地理分布有关的信息和趋势。2 EPA 发现:• 大约 68% 是项目容量为 1 MW 或更大的大型系统。• 安装数量最多的州包括马萨诸塞州(135)、新泽西州(81)、纽约州(52)和加利福尼亚州(30)。• 所有装置中有 93% 是太阳能光伏 (PV)。• 所有装置中有 60% 位于以前的垃圾填埋场上。• 超过 25% 的太阳能装置位于马萨诸塞州。 • 怀俄明州的五个风力发电厂占全国总装机容量的 11%。
我们介绍了矩阵乘积状态(MP)的首次成功应用,该矩阵乘积状态(MPS)代表在整个温度范围内的两个空间维度中平衡中的热量子纯状态(TPQ)。我们将Kitaev Honeycomb模型用作主持量子自旋液体(QSL)基态的突出例子,以使用先前几乎完全使用Free Majorana Fermionic描述来瞄准两个先前已解决的特定热峰。从高温随机状态开始,我们的TPQ-MPS框架精确地再现了这些峰,这表明基于自旋的量子多体外描述仍然可以捕获Z 2量规场中的新出现的巡回Majorana fermions。截断过程有效地丢弃了高能状态,甚至达到了远程纠缠的拓扑状态,接近给定有限尺寸群集的确切基态。TPQ-MP的优点比精确的对角度或基于纯化的方法的优势是,即使在有限温度下,其数值降低的成本也来自降低的效率希尔伯特空间。
摘要:磨损驱动的工具故障是行业中的主要障碍之一。可以通过陶瓷增强金属基质复合材料的表面涂层来解决此问题。但是,最大陶瓷含量受破解的限制。在这项工作中,研究了功能分级的WC-陶瓷颗粒增强的星状6涂层的摩擦学行为。到此为止,研究了在室温和400°C下的耐磨性。此外,摩擦学分析得到了裂纹敏感性和硬度评估的支持,这对于使用陶瓷粒子增强的复合材料的处理至关重要。结果表明,可以使用功能分级的材料来增加最大可允许的WC含量,从而改善摩擦学行为,最著名的是在高温下。此外,在高温磨损测试中观察到了从磨料到氧化磨损的转变。关键字:摩擦,涂料,金属基质复合材料,功能分级的材料,高温,激光定向的能量沉积
1新加坡技术与设计大学的科学,数学和技术集群,Somapah Road 8,487372新加坡2号新加坡2量子信息和计算机科学与量子科学与联合量子研究所联合中心,NIST / MARYLAND MARYLAND,MARYLAND 20742,MARYLAND 20742,美国20742新加坡共和国,新加坡共和国4量子技术中心,新加坡国立大学117543,新加坡5 Design,Somapah Road 8,新加坡487372 8 Abdus Salam国际理论物理中心,Strada Costiera 11,34151 Trieste,意大利
此预印本的版权所有者此版本于 2023 年 10 月 27 日发布。;https://doi.org/10.1101/2023.10.27.564288 doi:bioRxiv preprint
具有高拓扑保护的光子晶体波导的实现,可以防止缺陷引起的散射。应该通过通过低损失和反射的尖锐弯曲来利用引导来设计非常紧凑的设备。在这项工作中,我们使用山谷拓扑三角谐振器耦合到输入波导,以评估在尖锐弯曲或拆分器(如拆分器之类的路由元件)之间具有相反螺旋性的螺旋拓扑边缘模式之间的转换。为此,我们首先通过数值模拟在腔角处的向后散射或在输入波导和腔之间的分离器上的螺旋转换而传播的向后散射存在。我们显示了这种过程发生的证据,尤其是在尖锐的角落,从而导致传输最小值和分裂共振,否则不存在。为了评估与此效应相关的小耦合系数,然后引入了基于散射矩阵在分裂器和谐振器的角落的精确参数化的现象学模型。通过与数值模拟进行比较,我们能够量化尖锐的弯曲和分裂器处的螺旋度转换。最后,我们使用获得的现象学参数集与基于Sierpi´nski Triangle构造的分形型腔的完整数值模拟将模型的预测与完整的数值模拟进行比较。我们表明,该协议总体上是好的,但在最小的三角形组成的腔中显示出更多的差异。我们的结果表明,即使在免于几何和结构缺陷的系统中,在拐角,尖锐的弯曲和裂缝方面,螺旋性转化也不可以忽略不计。但是,可以通过一种现象学方法来实现更简单但预测的计算,从而可以模拟超出标准数值方法的非常大的设备,这对于光子设备的设计至关重要,这些光子设备通过电磁波的拓扑传导来收集紧凑性和低损失。
MMC对RH30和RD球体的影响。 a如果在Rh30 -arms-(左)(左)和RD -erms-(右)球体上染色(FN; Green)和胶原I(大肠杆菌;红色),则在不存在MMC处理的情况下冷冻切片(DAPI,cell核,蓝色),比例尺=50μm。 B胶原蛋白I的平均荧光强度(MFI)和球体冷冻切片中的纤连蛋白表达。 c离开。 在所有测试条件下播种在ULA板中的球体的相对形图像,以及井底RH30粘附细胞的细节。 比例尺=右200μm。 如果在RH30和RD球体中用MMC处理的纤连蛋白和胶原蛋白I的染色显示RH30球体下方的粘附细胞的存在。 比例尺=50μm。 d无需MMC处理的RH30和RD球体的形状参数(面积,周长,圆度和坚固),n = 12,Student t -test*p <0.05,** p <0.01,**** p <0.0001。 (为了解释该图传奇中对颜色的引用,读者被转介给本文的网络版本。)MMC对RH30和RD球体的影响。a如果在Rh30 -arms-(左)(左)和RD -erms-(右)球体上染色(FN; Green)和胶原I(大肠杆菌;红色),则在不存在MMC处理的情况下冷冻切片(DAPI,cell核,蓝色),比例尺=50μm。 B胶原蛋白I的平均荧光强度(MFI)和球体冷冻切片中的纤连蛋白表达。c离开。在所有测试条件下播种在ULA板中的球体的相对形图像,以及井底RH30粘附细胞的细节。比例尺=右200μm。如果在RH30和RD球体中用MMC处理的纤连蛋白和胶原蛋白I的染色显示RH30球体下方的粘附细胞的存在。比例尺=50μm。 d无需MMC处理的RH30和RD球体的形状参数(面积,周长,圆度和坚固),n = 12,Student t -test*p <0.05,** p <0.01,**** p <0.0001。(为了解释该图传奇中对颜色的引用,读者被转介给本文的网络版本。)