Learnware范式旨在建立一个众多训练有素的机器学习模型的Learnware Dock系统,使用户能够重用现有的有用模型来完成其任务,而不是从头开始。系统中的每个学习软件都是由其开发操作提交的良好模型,与学习仓库系统生成的规范相关联。规范表征了相应模型的特定,使其能够准确地确定新的任务要求。Existing specifi- cation generation methods are mostly based on the R educed K ernel M ean E mbedding (RKME) technique, which uses the M aximum M ean D iscrepancy (MMD) in the R eproducing K ernel H ilbert S pace (RKHS) to seek a reduced set that char- acterizes the model's capabilities.但是,现有的基于RKME的方法主要利用特征信息来通过假设地面真实标签函数的存在,而留下标签信息,该标签信息能够提供丰富的语义特征,并没有受到影响。此外,生成的规范的质量在很大程度上依赖于内核的选择,这使其无法适应所有真实世界的场景。在本文中,为了克服上述局限性,我们提出了一种名为l ane的新颖规范方法,即l abel- a a a a a a eural e mbedding。在l ane中,使用神经嵌入空间来替换RKHS,有效地规避了内核选择的步骤,从而解决了现有基于RKME的规范方法中内核上的de否。更重要的是,L ane使用标签信息作为附加监督来增强生成过程,从而导致质量的规格。广泛的例证证明了学习软件范式中提出的LANE方法的有效性和优势。
相关性模块在电子商务搜索中起着基本作用,因为他们负责根据用户查询从数千个项目中选择相关产品,从而增强用户的体验和效率。传统方法根据产品标题和用户查询来计算相关性得分,但是单独的标题中的信息可能不足以完全删除产品。一种更通用的方法是进一步利用产品图像信息。近年来,视觉语言预训练模型在许多情况下都实现了令人印象深刻的恢复,这些模型将构图的研究利用将文本和vi-sual特征映射到关节嵌入空间中。在电子商务中,一种常见的做法是根据预先训练的模型,使用电子商务数据进一步微调模型。但是,性能是最佳的,因为视觉语言预训练模型缺乏专门为查询设计的一致性。在此过程中,我们提出了Q uery-a an an a an an a a a guage i mage f usion e mbedding,以应对这些挑战(Query-Life)。它利用基于查询的mul-timodal融合来根据产品类型有效地合并图像和标题。在方面,它采用查询感知的模态对准来增强产品的全面表示的准确性。此外,我们设计了Genfilt,它利用大型模型的发电能力过滤出虚假的负样本,并进一步改善模型中对比度学习任务的整体性能。实验表明,查询寿命的表现优于现有基准。我们进行了消融研究和人类评估,以验证查询寿命内每个模块的效率。此外,查询生活已在Miravia搜索1