使用数字技术和在线工具来支持学生和教育工作者已经成为高等教育学习转型的代名词,特别是在研究生课程中。可以说,最近推动高等教育转型的潮流与这样的观念相一致,即研究生需要更灵活的学习机会,同时仍然保留获得高质量、引人入胜和协作的教学方法的机会。本文报告了一个探索性案例研究,该研究重点关注北欧背景下跨校园/大学合作以及为攻读音乐、通信和技术 (MCT) 领域硕士学位的学生提供的灵活学习机会。指导研究的研究问题是“在跨校园混合学习环境中,教育工作者认为哪些因素对于为学生提供支持性学习体验至关重要?”教学法、空间和技术 (PST) 框架支撑着这个项目的发展,并构成了其发展的基础。我们的研究结果确定了在尝试为学习基本同步的混合音乐、通信和技术课程的学生设计和实施高质量学习机会时需要考虑的三个主题。这些主题是灵活性、信任和人为因素以及所有权。研究结果还强调需要重新关注可以调整和不断修订的教学方法,以满足同步混合学习空间中学生不断变化的需求。
MIT Safepaths 团队 PathCheck Covid SafePaths 团队贡献者:Ramesh Raskar、Dr. Ranu Dhillon、Dr.Suraj Kapa、Deepti Pahwa、Renaud Falgas、Lagnojita Sinha、Aarathi Prasad、Abhishek Singh、Andrea Nuzzo、Vivek Sharma 1. 简介 手动接触者追踪 (MCT) 涉及建立一支“侦探大军”,根据 WHO 的规定执行三个步骤 (i) 接触者识别:快速回溯受感染个体的接触者,(ii) 对他们进行访谈,以及 (iii) 跟踪他们症状的变化。在访谈过程中,接触者追踪人员还可以识别潜在的表面或区域暴露,以确定其他传播途径(例如,共用表面、共用设备等)。接触者追踪人员在历史上一直是抗击大流行的关键,因为接触者追踪在确定新病原体(如 COVID)如何传播时至关重要。在 Safe Paths,我们的目标是在整体“理想”接触者追踪系统的背景下构建数字能力。我们相信,数字工具最终可能会具有优势/功能,以增强手动追踪的某些方面。例如,根据 CDC 的建议,病例调查人员可能会要求受感染者参考位置跟踪应用程序来确定他们最近的位置历史。数字接触建议 (DCA) 是一个相对较新的领域。DCA 软件可以执行以下一项或多项任务:
锁定 – 锁定借款人的贷款需要反映准确及时的定价。一旦发出利率锁定承诺,应立即更新渠道,通常通过贷款发放软件 (LOS) 集成(例如我们在 MCT 提供的集成),贷款文件特征的准确性对于确定适当的对冲至关重要。 覆盖率 – 必须根据市场变化和抵押贷款渠道的变化不断审查和更新活跃的对冲头寸。覆盖率基于多种因素,最明显的是拉动率和公司整体期望的对冲比率。对冲软件可以帮助您在执行交易之前模拟您的最终头寸,或者您的对冲顾问可以负责代表您执行交易。 最佳执行 – 最大化利润和保护保证金是任何二级营销经理的目标。强大的最佳执行分析可帮助您根据目标选择最佳交付方式和投资者目的地。简而言之,为每件产品找到最佳出路。 按市价报告 – 报告对于监控渠道变化和有效跟踪盈利能力都至关重要。对于所有权部门和二级部门来说,获得强大的每日报告堆栈至关重要。每天晚上,发起人都会将管道和相应的 TBA 交易头寸标记到市场上。这种实时和每日报告支持透明度和优化。
肿瘤微环境对癌症的发展和进展至关重要,包括周围的基质和免疫细胞、细胞外基质以及细胞间隙中的代谢物和信号分子环境。为了支持持续的有丝分裂活动,癌细胞必须重新配置其代谢表型。乳酸是这种代谢改变的主要副产物,因此会在肿瘤中积累。乳酸通过直接抑制免疫细胞的细胞毒性和增殖,积极促进免疫逃避,这是癌症的一个标志。此外,乳酸可以募集和诱导免疫抑制细胞类型,例如调节性 T 细胞、肿瘤相关巨噬细胞和髓系衍生的抑制细胞,这些细胞进一步抑制抗肿瘤免疫反应。鉴于其在肿瘤发生中的作用,测量肿瘤内和全身乳酸水平已显示出作为几种癌症类型的预测和预后生物标志物的前景。许多抗癌疗法的疗效受到免疫抑制性 TME 的限制,其中乳酸是主要因素,因此,针对乳酸代谢是当务之急。开发乳酸代谢中关键蛋白质的抑制剂,如 GLUT1、己糖激酶、LDH、MCT 和 HIF,已在临床前研究中显示出良好的前景,但迄今为止在人体试验中却没有取得成功。这可能是由于临床前模型的弱点导致无法重现自然界中代谢相互作用的复杂性。这些疗法的未来可能是作为更传统治疗的辅助手段。
在本文中,我们考虑了5G网络切片的虚拟网络嵌入(VNE)问题。此问题需要在基板虚拟化物理网络上分配多个虚拟网络(VN),同时最大化资源,最大数量,放置的VN和网络运营商的好处。我们解决了随着时间的推移而到达的问题的在线版本。受到嵌套推出策略适应(NRPA)算法的启发,这是众所周知的蒙特卡洛树搜索(MCT)的变体,该变体学习了如何随着时间的推移进行良好的模拟,我们提出了一种新算法,我们称之为邻里增强策略适应(NEPA)。我们算法的关键特征是观察NRPA无法利用状态树一个分支中获得的知识,而这是另一个启动的知识。NEPA通过以节俭的方式将NRPA与邻居搜索相结合来学习,这仅改善了有希望的解决方案,同时保持运行时间较低。我们将这项技术称为猴子业务,因为它归结为从一个有趣的分支跳到另一个分支,类似于猴子如何跳到树上,而不是每次都倒下。与其他最先进的算法相比,NEPA在接受率和收入比率的比率方面取得了更好的结果,无论是在真实和合成拓扑上。
深度加固学习(DRL)的最新进步显着提高了适应性交通信号控制(TSC)的性能。但是,DRL策略通常由神经网络表示,这些神经网络是过度参数化的黑框模型。因此,学识渊博的政策通常缺乏解释性,由于资源构成而无法直接部署在现实世界中的硬件中。此外,DRL方法经常表现出限制性的概括性能,努力将学习的政策推广到其他地理区域。这些因素限制了基于学习的方法的实际应用。为了解决这些问题,我们建议使用一个可以继承的可解释程序来表示控制策略。我们提出了一种新的方法,即用于交通信号控制(π-light)的可策划增强学习,旨在自主发现非差异性的程序。具体来说,我们为构建程序定义了特定域的语言(DSL)和转换规则,并利用蒙特卡洛树搜索(MCT)在离散空间中找到最佳程序。广泛的实验表明,我们的方法始终超过基本线方法。此外,与DRL相比,π灯具有优越的通用能力,从而使跨不同城市的交叉点培训和评估。最后,我们分析了学到的计划政策如何直接在资源极有限的边缘设备上删除。
人工智能(AI)的应用有可能彻底改变纳米医学的配方发展。这项研究研究了通过乳化 - 散热过程产生的孕激素负载固体脂质纳米颗粒(PG-SLN)的物理化学特征,重点是通过设计实验设计(DOE)和人造神经网络(ANN)(ANN)来证明这种受控制备方法的有效性。关键质量因素,包括硬脂酸,中链甘油三酸酯(MCT),pluronic F-127和丙烯乙二醇(PG)的量,使用DOE来简化实验设置。硬脂酸的浓度被鉴定为影响PG-SLN物理化学特性的关键因素,影响粒径(PS),多分散指数(PDI),ZETA电位(ZP)和%药物载荷(%DL)。确定了PS,PDI,ZP和%DL的最佳条件。 DOE揭示了多个运行的可接受值,ANN模型表现出高度的预测准确性,超过了响应表面方法(RSM)。 测试了选定的PG-SLN配方透皮药物的递送,与PG悬浮液相比,渗透率得到了改善。 用柠檬烯加载进一步增强了透皮药物的递送,这归因于林烯作为穿透性增强剂的作用。 此外,发现所选的PG-SLN配方对神经元细胞是安全且无毒的。 提出了DOE和ANN的组合来增强预测能力。 这项研究强调了PG-SLN在透皮药物递送中的潜力,强调了柠檬烯是一种安全有效的增强剂。确定了PS,PDI,ZP和%DL的最佳条件。DOE揭示了多个运行的可接受值,ANN模型表现出高度的预测准确性,超过了响应表面方法(RSM)。测试了选定的PG-SLN配方透皮药物的递送,与PG悬浮液相比,渗透率得到了改善。用柠檬烯加载进一步增强了透皮药物的递送,这归因于林烯作为穿透性增强剂的作用。此外,发现所选的PG-SLN配方对神经元细胞是安全且无毒的。提出了DOE和ANN的组合来增强预测能力。这项研究强调了PG-SLN在透皮药物递送中的潜力,强调了柠檬烯是一种安全有效的增强剂。这项研究有助于对在药物和生物医学领域应用AI工具的兴趣日益增长的兴趣,以改善预测性建模。
作为微电子领域的一个总体趋势,产品小型化越来越重要,并能带来成本和系统优势。顺应这一总体趋势,新型红外凝视阵列越来越紧凑,并能为不同的红外波段提供系统解决方案。在法国,HgCdTe(碲化汞镉/MCT)材料和工艺以及混合技术已达到更先进的水平,以提供这些新型凝视阵列。因此,对于中波(MW)应用,15µm 间距电视格式(640×512)HgCdTe 探测器(称为 Scorpio)配有 1/4-W 微型冷却器和小型化低温技术。这种优化的杜瓦瓶已扩展到 TV/4 格式,使用自 2000 年以来已大规模生产的成功的焦平面阵列。关于长波阵列,Sofradir 多年来一直提供 320×256 LW 探测器,其截止波长在 9 到 12 µm 之间调整,具体取决于所需的应用。基于这一经验,2004 年开发了两种新的 LW HgCdTe 产品,并从 2005 年初开始提供。依靠具有最新改进的标准 HgCdTe 生产工艺和优化的杜瓦瓶系列,现在推出了 Venus LW 探测器。这是一款分辨率更高的 25 µm 间距 384×288 LW IDDCA,配备 0.5 W 微型冷却器,截止波长在 9 到 10 µm 之间,工作温度在 77 K 到 85 K 之间,规格
摘要 本综述旨在全面概述使用初榨椰子油 (VCO) 作为疏水性脂肪成分的乳剂。它重点介绍 VCO 中的主要甘油三酯,这些甘油三酯可转化为具有多种药理特性的生物活性中链甘油三酯 (MCT)。VCO 的重要性在于帮助抵抗病毒和微生物感染、利用其多酚含量作为强效抗氧化剂以及支持减肥和与肥胖相关的代谢改善。VCO 源自椰子,是一种重要的植物油,主要产于菲律宾、马来西亚和印度尼西亚;这些地区盛产椰子。尽管 VCO 具有广泛的益处,但反饱和脂肪偏见限制了它在医学文献中的曝光和认可。本综述填补了这一空白,强调了基于 VCO 的乳剂应用以及对全球消费者和行业的优势。通过研究 VCO 的特性及其对药物的重大贡献,该研究旨在增强对基于 VCO 的乳剂的理解和认识。研究结果强调,需要更广泛地认识 VCO 的潜力,特别是在对抗感染、作为抗氧化剂以及促进与体重管理和代谢健康相关的健康益处方面。本综述为未来在制药和健康相关背景下利用 VCO 的研究和开发提供了基础参考。关键词:初榨椰子油、病毒、抗氧化剂、多酚、代谢
英国英国牛津大学亚历山德罗·阿巴特大学,法国Alessandro Astolfi帝国学院和Univ。巴西UFRGS,比利时卢旺大学,弗朗西·布兰奇尼大学,意大利意大利乌迪恩大学,法国,阿莱斯德罗·博洛斯科大学,意大利瓦伦蒂纳·布雷斯蒂娜·布雷斯基·布雷斯基·埃因德·埃因德尔大学,荷兰荷兰塞浦路斯大学塞浦路斯大学塞浦路斯大学塞浦路斯大学的S -Ming Cao大学荷兰理工学院 Samuel Coogan 美国佐治亚理工学院 Andrea Cristofaro Sapienza 意大利罗马大学 Jamal Daafouz 法国洛林大学 Denis Efimov 法国里尔国家信息与自动化研究所 Farhad Farokhi 澳大利亚墨尔本大学 Francesco Ferrante 意大利佩鲁贾大学 Antonella Ferrara 法国帕维亚大学 Giancarlo Ferrari-Trecate 瑞士洛桑联邦理工学院 Mirko Fiacchini 法国格勒诺布尔阿尔卑斯大学 CNRS Rolf Findeisen 德国达姆施塔特工业大学 Marcelo Fragoso LNCC / MCT 巴西 Giulia Giordano 意大利特伦托大学 Antoine Girard L2S 法国 Rafal Goebel 美国芝加哥洛约拉大学 Alexandre Goldsztejn 法国南特中央理工大学 LS2N Christoforos N. Hadjicostis 塞浦路斯大学