➢ 为高温应用开发先进的填料床潜热存储数值模型(与孟买印度理工学院机械工程系 Sandip Kumar Saha 博士合作)。(资助研究:计划编号:DST/TMD/MES/2K17/25(C)) ➢ 为太阳能热发电回路中的热交换器开发一种先进的模型。(与孟买印度理工学院机械工程系 Sandip Kumar Saha 博士合作)。(资助研究:计划编号:DST/TM/SERI/2k12/59(G)) ➢ 利用单元分析方法,使用结构化六边形模板,开发具有有限源项的热传导方程数值解的计算方案(与孟买印度理工学院能源科学与工程系 Suneet Singh 博士合作)。 ➢ 内部 Parkhomov 型实验的数据分析(详细 XRD),旨在寻找可持续的低能量反应途径以产生能量(与印度理工学院孟买分校机械工程系教授 Kannan Iyer 博士合作)。(资助研究:计划编号:RD/0116-NTPC000-005)
文章信息摘要零售业是最快的行业,通过RFID技术促进了零售业的增长。管理良好的RFID节省了我们的大量精力和时间。RFID标签作为库存跟踪技术起着至关重要的作用。RFID可显着降低运营成本,提高质量,准确的资产跟踪,提高信息准确性,缩小缩小,库存降低和库存的位置等等。射频识别是一种不断增长的技术,越来越多地用于供应链的管理中。RFID技术在供应链过程中起着有效的作用,因为它们能够在整个供应链中追踪,识别和跟踪信息。该技术为供应商,制造商,分销商和零售商提供有关产品的精确实时信息。本文的主要目的是验证有助于零售部门增长的射频识别技术。这项研究的主要贡献是解释供应链管理和零售成功的RFID。关键字:技术,零售,RFID,RFID市场,供应链管理,现代零售。
该药物的使用必须有以下之一的支持:FDA 批准的产品标签、CMS 批准的药典、国家综合癌症网络 (NCCN)、美国临床肿瘤学会 (ASCO) 临床指南,或符合 CMS 医疗保险福利政策手册第 15 章要求的同行评审文献。
X 射线晶体学在药物发现和开发中至关重要,因为它可以提供有关目标蛋白质及其与 1 种潜在候选药物相互作用的详细结构数据。本综述旨在概述 X 射线晶体学在制药行业中的应用,重点介绍其在理解蛋白质-配体相互作用、指导合理药物设计和帮助基于结构的药物优化方面的作用。该研究利用来自各种来源的二手数据,包括已发表的研究文章、评论论文和数据库,全面回顾了 X 射线晶体学在药物发现中的现状。涵盖的关键主题包括 X 射线晶体学的基本原理、蛋白质结晶过程、数据收集和结构测定,以及与该技术相关的挑战和局限性。通过强调 X 射线晶体学在药物发现中的成功和局限性,本综述旨在提供见解,帮助研究人员优化这一强大工具在开发新型疗法中的使用。最终,更好地了解 X 射线晶体学在药物发现和开发中的作用可以设计出更有效、更具体、安全性更高的药物分子。
摘要药物依从性是有效糖尿病管理的关键组成部分,护士在通过各种策略促进依从性方面发挥了至关重要的作用。本文献综述研究了有关护理干预措施的当前证据,以改善糖尿病患者的药物依从性。所确定的关键策略包括患者教育和自我管理支持,动机访谈,基于技术的干预措施,协作护理模型,解决社会和文化因素,持续质量1改进以及专业教育和协作。这些基于证据的方法已被证明可以显着改善糖尿病患者的药物依从性,血糖控制和自我保健行为。但是,诸如人员不足,缺乏专业培训和不一致的协议等挑战可能会阻碍最佳实施。需要进一步的研究来完善和标准化护理干预措施,以增强药物依从性并改善糖尿病患者的结局。
使用机器人解决方案Ezzedeen Alfataierge*,Pavel Golikov,Ahmad Ramdani,Ahmad Ramdani,Abdulrahman Alshuhail -Expec高级研究中心,Saudi Aramco Aramco Seismic Seismic数据获取是一个劳动力密集的过程。利用机器人技术和自动化的进步,我们能够显着减少收购人员的环境足迹。本文介绍了已经开发并正在开发的技术,以实现自主地震数据采集系统的土地勘探系统。沙特阿美(Saudi Aramco)的地球物理机器人(SAGR)利用无人驾驶汽车(UAV)来扫描表面并提供准确的侦察报告。此信息用于部署一群配备了板载地震传感系统的自定义无人机,该系统称为自主地震采集设备(ASAD)。也得到了自主地震源船只的支持,以实现完全自主的采集系统。我们提出了过去几年所取得的进步,以支持自主收购系统各个组成部分的某些领域结果。引言机器人技术和人工智能/机器学习的进步使得能够开发出铺平道路数字化转型的伟大技术。这些努力在自治地震采集设备的土地和海洋探索方面很明显(Sudarshan等,2017; Chutia等,2017;Blacquiêedreand Berkhout,2013)。本文介绍了已开发的集成解决方案,这些解决方案是为了实现完全自主的地震收购人员。SAGR是一种无人飞行的飞机,旨在有效的侦察和测量(Golikov等,2023)。该技术利用AI/ML来实现自主分类和表面特征的识别,以优化有效的地震数据获取的地震调查设计(Ramdani等,2023)。SAGR系统的输出馈入ASAD的飞行和调查计划(Yashin等,2023)。目前正在开发其他技术以进一步发展这一愿景;开发可以在温和的地形(尤其是沙漠环境)中自动部署淋巴结系统的陆地漫游者。同样,陆虎可以与地震源设备耦合,这些设备将充当自主地震源船只,因此,完成了必要的工具,以在土地上实现自主地震采集系统,以高效,可持续性,更安全的地下图像和资源探索。
商品。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2加密。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2默认值。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。3 fx。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4兴趣_rates。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5损失。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 stock_data。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7个股票。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 Stock_indices_constituals。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。8伏特。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10
高级太空学院通过在科学,工程,技术和数学方面的沉浸式体验来探索大学和职业准备。受训者经历了各种宇航员培训练习,工程挑战和团队建设活动,所有这些活动都在延长的持续时间模拟太空任务中达到顶峰。活动包括:•在1/6重力椅子和多轴教练上像宇航员一样训练。•设计,建造和推出团队火箭,并安全地恢复其有效载荷。•在我们的太空营挑战课程中学习高元素的团队建设技能。•在水下宇航员教练中潜水时,会体验中性浮力!•通过建造隔热罩并建造流动站来测试我们在工程挑战中的技能。•飞行飞机模拟器!•发现国际空间站在我们的全球社区中所扮演的角色。•在进行扩展任务模拟的火星时,为每次偶然性做准备!•在太空探索中与宇航员和传奇历史人物结识。•可选:从亨茨维尔的阿拉巴马大学赚取一个学分的新生一般科学,以这项大学认可的课程!(学生有责任注册并提供付款。)
模拟和数字电子设备,电气和电子设备,电气和测量方法,信号和系统,ESP(ESP(特殊用途)的英语),电气工程的基本原理,微处理器,数字微电子,分布式系统
摘要:本综述研究重点关注并网双馈感应发电机 (DFIG) 风电场智能控制系统中使用的各种方法。本文回顾了一种使用模糊协调 PI 的控制器,该控制器建议用于在大型风电场发生干扰时通过降压-升压转换器 (DC-DC 转换器) 改善与 DFIG 耦合的超级电容器 (SC) 的动态性能。此外,本研究回顾了一种俯仰角控制,用于在不同风速下调节风力涡轮机 (WT) 叶片的角度,以控制功率并安全运行 WT。在俯仰角上实施人工智能控制 (模糊方法) 取代传统控制以提高系统性能,模糊方法用于在各种工作条件下自动调整传统控制参数。然后,本文回顾了一种开发的控制技术,该技术使用区间型 2 模糊逻辑控制 (FLC) 调整 PI 来为由 DFIG 操作的 WT 进行最佳扭矩调节。建议的控制可调节机械转子速度的误差并产生实现最大输出功率的最佳扭矩。根据现有文献的结果,引入了 SC 到三相四线有源电力滤波器 (APF) 直流链路的集成,方法是使用由模糊控制方法控制的接口三级双向降压-升压转换器。关键词:智能控制系统;风能;电力电子;双馈感应发电机;最大功率跟踪。