调查模式:[a] 随机数字拨号;[b] 计算机辅助电话访谈;[c] 交互式语音应答。调查项目名称:[1] 非洲疾控中心疫苗认知调查;[2] 世界银行高频电话调查;[3] 中低收入小组研究;[4] 新冠肺炎循证应对伙伴关系;[5] 联合国儿童基金会社区快速评估;[6] 冠状病毒疫苗研究;[7] 新冠肺炎趋势和影响调查。† 阿拉伯晴雨表在疫情初期(2020 年)使用电话调查收集数据,并在 2021-2022 年过渡到家庭面对面调查。附录表 7 提供了此表的扩展版本。
摘要 基于测量的量子计算 (MBQC) 范式始于高度纠缠的资源状态,通过自适应测量和校正在该状态上执行幺正操作以确保确定性。这与更常见的量子电路模型形成对比,在更常见的量子电路模型中,幺正操作在最终测量之前直接通过量子门实现。在这项工作中,我们将 MBQC 中的概念融入电路模型以创建一种混合模拟技术,使我们能够将任何量子电路拆分为经典高效可模拟的 Clifford 部分和由稳定器状态和局部(自适应)测量指令(即所谓的标准形式)组成的第二部分,该部分在量子计算机上执行。我们进一步使用图状态形式处理稳定器状态,从而显著减少某些应用的电路深度。我们表明,可以使用协议中的完全并行(即非自适应)测量来实现相互交换的运算符组。此外,我们还讨论了如何通过调整资源状态来同时测量相互交换的可观测量组,而不是像在电路模型中那样在测量之前执行昂贵的基础变换。最后,我们通过两个具有高度实际意义的例子证明了该技术的实用性——用于水分子基态能量估计的量子近似优化算法和变分量子特征求解器 (VQE)。对于 VQE,我们发现与标准电路模型相比,使用测量模式可以将深度减少 4 到 5 倍。同时,由于我们结合了同时测量,与在电路模型中单独测量泡利弦相比,我们的模式使我们可以将拍摄次数节省至少 3.5 倍。
纠缠量子系统具有非局部相关性,这种相关性比传统方法所能实现的更强。此特性使得执行自测试成为可能,这是量子功能验证的最强形式,它允许传统用户推断用于生成给定测量统计数据集的量子态和测量值。虽然量子态的自测试已被充分理解,但测量的自测试,尤其是在高维度中的自测试,仍然相对未被探索。在这里,我们证明每个真实的投影测量都可以进行自测试。我们的方法采用了这样一种想法,即现有的自测试可以扩展以验证其他不受信任的测量,这称为事后自测试。我们形式化了事后自测试的方法,并建立了可以应用它的条件。利用这个条件,我们为所有真实的投影测量构建了自测试。我们在此结果的基础上开发了一种迭代自测试技术,该技术提供了一种从现有自测试构建新自测试的清晰方法。
对蛋白质,亚基或其他生物分子之间纳米距离的光学研究一直是数十年来Förster共振能量转移(FRET)显微镜的独家特权。在这项工作中,我们表明Minflux荧光纳米镜检查可直接,线性和吻线精度直接,线性,线性,线性,线性,线性,线性,线性直接,直接,直接,线性地降低到1 angstrom。我们的方法通过量化多肽和蛋白质中的1至10纳米距离来验证。此外,我们可视化了免疫球蛋白亚基的方向,在人类细胞中应用了该方法,并揭示了组氨酸激酶PAS PAS结构域二聚体的特定构型。我们的结果打开了通过直接位置测量在骨内分子尺度上检查接近和相互作用的大门。o
土壤呼吸(RS)是大气CO 2的最大来源,对近地面风之间的关系,CO 2从土壤表面释放,测量方法对预测未来的大气CO 2浓度至关重要。在这项研究中,风速与土壤CO 2通量之间的关系通过荟萃分析在全球范围内阐明,并进一步探讨了通量测量方法与对照试验的结果一起探索,以阐明测量结果的不确定性。结果表明,近地面风速与土壤CO 2释放呈正相关,而近地表风导致土壤CO 2气体释放增加。风干扰会影响浓度梯度和气体室测量值,而较低计算的土壤CO 2释放了与风泵效应和负压的伯诺利效应的观点相冲突,导致更大的表面气体交换。对数响应比率的结果表明,在广泛使用的气体室方法测量值中,近地表风导致低估为12.19–19.75%。这项研究的结果表明,当前的RS测量值有偏见,并且需要紧急处理近地表风对RS测量的影响,以更准确地评估陆地碳循环并制定气候变化响应策略。
a 波兰格但斯克大学理论物理和天体物理研究所,格但斯克 80-308,波兰 b 锡根大学自然科学与技术学院,Walter-Flex-Straße 3,锡根,57068,德国 c QSTAR、INO-CNR 和 LENS,Largo Enrico Fermi 2,佛罗伦萨,50125,意大利 d 马克斯普朗克量子光学研究所,加兴,85748,德国 e 路德维希马克西米利安大学物理学院,慕尼黑,80799,德国 f 慕尼黑量子科学与技术中心,慕尼黑,80799,德国 g 波兰格但斯克大学国际量子技术理论中心,格但斯克,80-308,波兰 h 柏林工业大学固体物理研究所,柏林,10623,德国 i 数学与物理学,厦门大学马来西亚分校,雪邦,43900,马来西亚 j MTA ATOMKI Lendület 量子关联研究组,核研究所,德布勒森,4001,匈牙利
•BSM对BRS和模式的贡献之间的相关性[JHEP 11(2015)166]。•必须测量两者以区分BSM方案。•与其他可观察结果(,,,b-decays)[JHEP 12(2020)097] [PLB 809(2020)135769]。•leptoquarks [EPJ.C 82(2022)4,320],CC和FCNC之间的相互作用[JHEP 07(2023)029],Neutrino sector中的NP
- Alpha Go最著名的例子 - 渲染引擎作为自动驾驶汽车的输入 - 亚马逊培训Alexa语言系统合成数据 - 美国Express和合成财务数据欺诈检测
F. Marin 1、⋆、A. Marinucci 2、M. Laurenti 3,4,17、DE Kim 5,6,3、T. Barnouin 1、A. Di Marco 5、F. Ursini 7、S. Bianchi 7、S. Ravi 8、HL Marshall 8、G. Matt 7、C.-T. Chen 9,VE Gianolli 10,7,A. Ingram 11,R. Middei 17,3,WP Maksym 12,C. Panagiotou 8,J. Podgorny 13,S. Puccetti 4,A. Ratheesh 5,F. Tombesi 3,14,15,I. Agudo 16,LA Antonelli 4,17,M. Bachetti 18,L. Baldini 19,20,W. Baumgartner 21,R. Bellazzini 19,S. Bongiorno 21,R. Bonino 22,23,A. Brez 19,N. Bucciantini 24,25,26,F. Capitanio 5,S. Castellano 19,E. Cavazzuti 2,S. Ciprini 4,14,E。Costa 5,A。de Rosa 5,E。Del Monte 5,L。Di Gesu 2,N。Di Lalla 27,I。Donnarumma 2,V。Doroshenko 28,M。DovˇCiak 13,S。Ehlert 21,T Iwakiri 33,S。Jorstad34,35,P。Kaaret21,V。Karas13,F。Kislat36,T。Kitaguchi29,J。Kolodziejczak21,H。Krawczynski37莫纳卡 5,3,6, L. Latronico 22, I. Liodakis 38, G. Madejski 39, S. Maldera 22, A. Manfreda 19, A. Marscher 34, F. Massaro 22,23, I. Mitsuishi 40, T. Mizuno 41, F. Muleri 5, M. Negro 42,43,44, S. Ng 45, S. O'Dell 21, N. Omodei 39, C. Oppedisano 22, A. Papitto 17, G. Pavlov 46, M. Perri 4,17, M. Pesce-Rollins 19, P.-O. Petrucci 10, M. Pilia 18, A. Possenti 18, J. Poutanen 47, B. Ramsey 21, J. Rankin 5, O. Roberts 9, R. Romani 39, C. Sgrò 19, P. Slane 12, P. Soffi tta 5, G. Spandre 19, D. Swartz 9, T. Tamagawa 29, F. Tavecchio 48, R. Taverna 49, Y. Tawara 40, A. Tennant 21, N. Thomas 21, A. Trois 18, S. Tsygankov 47, R. Turolla 50,51, J. Vink 52, M. Weisskopf 21, K. Wu 51, F. Xie 53.5,以及 S. Zane 51
摘要 角光阱 (AOT) 是一种用于测量生物分子扭转和旋转特性的强大仪器。迄今为止,AOT 对 DNA 扭转力学的研究是使用高数值孔径油浸物镜进行的,该物镜允许强捕获,但不可避免地会因玻璃-水界面而引入球面像差。然而,这些像差对扭矩测量的影响尚未通过实验完全了解,部分原因是缺乏理论指导。在这里,我们提出了一个基于有限元法的数值平台,用于计算捕获石英圆柱上的力和扭矩。我们还开发了一种新的实验方法,通过使用 DNA 分子作为距离标尺来准确确定由于球面像差导致的捕获位置偏移。我们发现计算和测量的焦移比非常一致。我们进一步确定了角陷阱刚度如何取决于陷阱高度和圆柱体与陷阱中心的位移,并发现预测和测量之间完全一致。作为对该方法的进一步验证,我们表明 DNA 固有的 DNA 扭转特性可以在不同的陷阱高度和圆柱位移下稳健地确定。因此,这项工作奠定了一个理论和实验框架,可以很容易地扩展到研究施加在具有任意形状和光学特性的粒子上的捕获力和扭矩。