固态量子技术的不断进步已带来前景光明的高质量硅基量子比特 [1], [2]。此类量子系统在低至 10 mK 的低温下工作,目前由位于室温低温恒温器外部的经典电子设备控制。虽然这种方法可以操作少量子比特系统,但很明显,管理数量大幅增加的量子比特将是不可能的。因此,要迈向大规模量子系统,有必要探索新颖的集成和封装方法,以在具有一个或多个温度阶段的低温环境中开发量子经典接口 [3]。与此同时,纳米级电阻开关存储器(也称为忆阻器)是室温应用(如基于大规模并行神经形态电子架构的大容量存储器和内存计算应用)最有前途的候选者之一 [4]。在低温下展示可逆、非挥发和高度非线性的忆阻器器件电阻编程将为基于忆阻器的低温电子学铺平道路,从而有助于克服实现量子霸权的障碍。到目前为止,研究电阻存储器的最低温度是 4 K [5]–[10],主要是为了更好地了解基于过渡金属氧化物的器件的温度相关行为和传导机制。
此预印本版的版权持有人于2025年2月11日发布。 https://doi.org/10.1101/2025.02.11.637618 doi:Biorxiv Preprint
在此背景下,映射分配的总体目的是通过策划已经存在的现有资源和工具包来减轻HRD的数字空间的趋势,这些资源和工具包支持在此限制空间中运行的HRD,以防止和对这些数字威胁和攻击做出反应。作为HRD的许多有用的资源和工具包,分配不是创建新的支持机制,而是要映射已经存在的支持机制,从而为HRD提供了概述和轻松访问HRD的使用。支持机制在这里广泛定义为提供支持(财务或其他)的机制,以应对其数字公民空间的威胁。作业的主要示例和范围包括针对防止或应对对人权捍卫者数字攻击(HRDS)的快速响应/紧急支持机制。映射可以包括的支持机制的另一个例子是提供给HRD的能力加强以减轻数字攻击,例如安全审核。在映射的背景下,顾问应分析数据并确定面临数字攻击的HRD的潜在差距,例如缺乏长期支持机制,不符合现有机制的支持和其他潜在差距的资格,可以为外部参与者提供潜在的支持机制的支持。基于映射的简短分析可以在与现有快速响应提供者的潜在访谈中出发点。因此,本映射分配的数据应该可以互操作,以便将其集成到关系数据库格式中。定义:该映射有望补充和增强现有知识管理参与者,论坛,计划和基础设施与数字民主和公民空间有关的现有映射。现有的映射和文档将提供给顾问。
引言细胞死亡是实现稳态至关重要的重要生物学过程[1]。一方面,自然而然地在组织形成和修复中做出贡献,另一方面,它有助于消除任何有害或患病的细胞,即病理细胞死亡[2]。细胞死亡以两种方式发生。有预谋和精心策划的程序性细胞死亡(PCD)是针对不同信号的响应,以实现人体的生长,维护和生理稳定性。另一种方式是非脑化或意外细胞死亡,称为坏死,通常是由于突然损伤或创伤而发生的。PCD分类为细胞凋亡,自噬,线粒体,坏死,凋亡和铁凋亡。在下一节中进行了详细说明,并在表1中进行了总结。此外,表2总结了它们的激活因子和抑制剂。
在一个上下文中似乎很明显的话,如果该上下文发生变化,则可以具有完全不同的含义。11尽管已经广泛研究了与上下文相关的推论,但一个基本问题仍然存在:12大脑如何同时推断感觉输入的含义和基本的13个上下文本身,尤其是当上下文在变化时?在这里,我们研究了灵活的感知分解14个 - 能够迅速适应而无需反复试验的上下文转移的能力。我们在动态环境中引入了15个新颖的变更检测任务,需要跟踪潜在状态和16个上下文。我们发现,小鼠表现出对潜在上下文的第一审判行为适应,而不是推理而不是奖励反馈。通过在可观察到的马尔可夫决策过程中得出贝叶斯最佳政策,我们表明,快速适应从内部信念状态的顺序19个更新中出现。此外,我们还表明,通过20枚强化学习训练的人工神经网络实现了近距离的性能,从而在其复发性动态中实现了类似贝叶斯推理的21种机制。这些网络开发了灵活的内部代表 - 22个tations,可以实时调整推理模型。我们的发现建立了灵活的23感知推断,作为认知灵活性的核心原理,为在不确定环境中的适应性行为提供了计算和24个机械性见解。25
染色体碎裂、染色体合成和染色体复合等现象被称为染色体再生,它们构成了新型的复杂重排,包括许多仅位于少数染色体区域的基因组改变。近十年来,这些现象的发现改变了我们对染色体异常的形成及其病因的认识。尽管这些新的灾难性机制各有特点,但它们通常发生在单个细胞周期内,并且它们的出现与基因组不稳定性密切相关。人们已经提出了各种能够产生染色体再生的非排他性外源性或细胞机制。然而,最近的实验数据揭示了两个主要过程,这两个过程在染色体有丝分裂分离出现缺陷后,可产生一系列细胞事件,从而导致染色体再生。这些机制包括整合分离染色体物质的微核的形成,以及由于端粒融合而导致染色体物质周围出现染色质桥。在这两种情况下,受损染色体物质的碎裂、修复和传递的细胞和分子机制与染色体再生相关的复杂染色体重排的特征一致。在本综述中,我们介绍了每种类型的染色体再生,并描述了实验模型,这些模型可用于验证染色体再生事件的存在,并更好地了解其形成和传递的细胞机制,以及它们对基因组稳定性和可塑性的影响。21
深神经网络(DNN)中所谓的“注意机制”表示DNN的自动适应,以捕获具有特定分类任务和相关数据的代表性特征。这种注意机制通过加强特征通道和本地强调每个特征图中的特征来在全球范围内发挥作用。渠道和特征重要性是在全球端到端DNS培训过程中学习的。在本文中,我们提出了一项研究,并提出了一种具有不同方法的方法,并在训练图像旁边添加了补充视觉数据。我们使用人类的视觉注意图在任务驱动或自由观看条件下独立于心理视觉实验获得的人类视觉注意图,或者在自由观看条件下或预测视觉注意图的强大模型。我们在图像旁边添加了视觉注意图作为新数据,从而将人类的视觉注意力引入DNNS培训中,并将其与全球和局部自动注意机制进行比较。实验结果表明,DNN中的已知注意力机制几乎与人类的视觉关注在一起,但提出的方法仍然可以更快地收敛和在图像分类任务中更好地表现。
拜占庭容错 (BFT) 共识机制,例如权威证明 (PoA)、实用拜占庭容错 (PBFT)、拜占庭协议 (BA) 或类似机制,通过一组预定义的验证者来保护网络,这些验证者值得信赖,可以验证交易并将区块添加到账本中。与任何人都可以参与的开放网络(如工作量证明或权益证明)不同,BFT 和类似机制与已知和经过审查的参与者一起运作,这些参与者通常由管理实体选出。验证者通过金钱奖励或外部动机(例如机构信任或监管义务)受到激励,以维护网络的完整性。恶意行为(例如提交无效交易或未能参与共识)可能导致处罚、从验证者集合中移除或其他影响,从而对不诚实行为产生经济和声誉上的威慑。验证者通过验证交易和提出区块来达成共识,只要大多数验证者诚实行事,网络就会保持安全。
免疫疗法已成为治疗各种疾病的有力方法,但其成功通常取决于佐剂的有效性,辅助药物会增强对治疗靶标的免疫反应。传统佐剂提供了基本的支持,但在实现高级疗法所需的特定丘陵和效力方面可能会缺乏。本评论重点介绍了有准备解决这些限制的新一代佐剂。我们探索了一系列创新的药物,包括非炎性核酸佐剂,细菌衍生物和合成分子,它们重新确定了佐剂在免疫疗法中的作用。这些新兴药物有望增强免疫反应,同时针对特定疾病环境(从癌症到传染病)调整疗法。通过检查这些佐剂的应用和潜力,本综述旨在全面了解它们如何将免疫疗法推向新水平的效率和精确度。通过开发这些新型佐剂,免疫疗法将实现更有针对性和持续的影响,为改善患者护理的预后铺平了道路。
抽象背景:败血症相关的脑病(SAE)是与败血症相关的器官功能障碍的一种普遍形式。没有伴随的明显的中枢神经系统(CNS)感染,但它具有死亡率的重大风险,可能导致持久的神经系统并发症。Angong niuhuang药丸(AGNH)在诸如脑缺血,脑部创伤和败血症等疾病中的功效已经建立了良好。尽管如此,AGNH在SAE进展中的特定调节作用和基本机制仍未探索。方法:脂多糖(LPS)处理用于构建SAE大鼠模型。Berderson的神经检查评分系统用于评分。通过酶联免疫吸附测定(ELISA)或相应的商业试剂盒检查基因和铁含量的水平。通过自动凝血分析仪确认了凝血酶原时间(PT),激活的部分血栓质蛋白时间(APTT),凝血酶时间(TT)和纤维蛋白原(FIB)水平。通过苏木精(HE)染色评估了神经元的数量和形态。蛋白质表达是通过蛋白质印迹确定的。结果:在AGNH或Deatecamine(DFO,铁毒性抑制剂)治疗后,LPS治疗介导的伯德森从未通过LPS治疗介导的功能评分增加,这表明AGNH改善了少年SAE小鼠的神经行为功能。此外,AGNH改善了年轻SAE小鼠的炎症和凝结参数。AGNH促进了少年SAE小鼠的神经元生长和减轻神经元损伤。此外,AGNH抑制了年轻SAE小鼠的氧化应激。最后,证明AGNH促进了与核因子2相关因子2(NRF2)/谷胱甘肽过氧化物酶4(GPX4)信号传导途径,通过上调NRF2和GPX4蛋白表达式。结论:这项研究表明,通过调节NRF2/GPX4信号通路,AGNH具有抑制GPX4诱导的少年SAE小鼠纤维毒性的能力。这一突破意味着AGNH作为SAE的治疗剂有前途的前景。