HAHNEL, Ulf 等人。能源决策和行为中的心理核算机制。收录于:《自然能源》,2020 年,第 5 卷,第 12 期,第 952–958 页。doi:10.1038/s41560-020-00704-6
患有不成比例的巨脑症 (ASD-DM) 的自闭症患者,其脑部相对于身高较大,智力障碍的发生率高于脑部大小正常的自闭症儿童,面临的认知挑战也比患有平均脑容量的自闭症儿童更严重。这种神经表型背后的细胞和分子机制仍不甚明了。为了研究这些机制,我们从正常发育的非自闭症儿童和患有和不患有不成比例的巨脑症的自闭症儿童中产生了人类诱导性多能干细胞。我们利用磁共振成像和全面的认知和医学评估对这些儿童进行了纵向评估,从 2 岁到 12 岁。我们发现,来自 ASD-DM 儿童的神经祖细胞 (NPC) 表现出更高的细胞存活率和抑制的细胞死亡,同时伴有
大多数当前的CSP植物都将硝酸盐盐混合物作为热存储介质。这些盐被用作纯粹明智的能量存储,在充电/放电周期期间,液态盐在冷水和冷罐之间抽水。由于硝酸盐降解为亚硝酸盐时发生的腐蚀引起的,这些系统限于大约560°C [2]。下一代CSP计划在更高的温度下运行,因此需要在650°C或更多的温度下运行的热量储能介质[1]。由于硝酸盐将在这些温度下分解,因此正在研究其他类型的盐,例如氟化物,氯化物和碳酸盐,以用于热量储能应用[3-7]。熔融氟化物盐已将大量研究重点视为传热液,并且是熔融盐反应器中核燃料的载体[8]。熔融氯化盐最近已经从CSP工业中获得了极大的兴趣,这主要是由于美国领导的GEN3 CSP项目,该项目旨在使用氯化物三元盐作为明智的热量储能培养基和高达800°C的温度下的热传递流体[9-12]。
a。奈良科学技术学院科学技术研究生院,8916-5高山 - 哥,马萨诸塞州伊科马,奈良630-0192,日本。b。数据科学中心,奈良科学技术学院,8916-5高山 - 俄罗斯州,伊科马,奈良630-0192,日本。c。材料信息学计划,RD技术与数字化转型中心,JSR Corporation,3-103-9 TOMAN-ACHI,KAWASAKI-KU,KAWASAKI,KANAGAWA,KANAGAWA 210-0821,日本。d。精细的化学工艺部,JSR Corporation,100 Kawajiri-Cho,Yokkaichi,MIE 510-8552,日本。e。 Keio大学科学技术学院化学系,日本Kohoku-Ku 3-14-1 Hiyoshi,Kohoku-Ku,Kanagawa,Kanagawa 223-8522,日本。f。奈良科学技术学院材料研究平台中心,8916-5高山 - 俄罗斯州,伊科马,纳拉,日本,伊科马630-0192。关键词聚合物,流量合成,自由基聚合,贝叶斯优化,多物镜贝叶斯优化,苯乙烯,苯乙烯,甲基丙烯酸甲酯
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年11月5日。 https://doi.org/10.1101/2023.05.07.539748 doi:Biorxiv Preprint
大约有 25 种抗癫痫药可用于治疗癫痫患者。选择最适合特定患者的药物主要基于关键随机临床试验的结果以及患者的特征和合并症。是否也应考虑抗癫痫药的作用机制以更好地预测患者对治疗的反应仍存在争议。尽管抗癫痫药的作用机制看似复杂多样,但不幸的是,现实情况是它们非常接近,特别是与癫痫病理生理的关系。除了拉莫三嗪和丙戊酸钠之间的关联之外,没有临床数据正式支持某些抗癫痫药在疗效方面存在协同关联。然而,通过尽可能限制具有相同作用机制的药物组合来预测不良事件的风险,无疑是日常治疗决策的重要驱动因素。
全栅环栅 (GAA) 是一种最佳器件配置,它能静电控制沟道长度最窄的晶体管 2,并最大限度地减少器件关断时的漏电流,从而使器件在每次切换时耗散更少。GAA 几何形状有多种可能,并且已经在水平 3 或垂直配置中得到验证。4 – 7 尽管技术解决方案有望最终将晶体管的栅极长度 L g 缩小到几纳米 5,但从一维(长栅极或大宽度)到全尺寸缩放的晶体管的转变对器件操作的影响仍有许多悬而未决的问题。其中,应明确解决所制造器件的质量和可能导致晶体管操作不良或电性能分散的波动源,以提出最终集成的解决方案。但是,经典的表征技术(如迁移率提取)不足以提供有关最终缩放时器件质量的信息,因为迁移率可能会在如此小的栅极长度下崩溃。 8 – 11 低频噪声可以成为一种非常精确的技术,用于表征低噪声纳米器件中的电子传输。12 , 13
非典型抗精神病药氯氮平的靶向多巴胺能途径和影响预脉冲抑制(PPI)以外的多个受体系统,这是一种对感觉运动门控的关键翻译度量。由于PPI是由异型抗精神病药(例如利培酮和氯氮平)调节的,因此我们假设P11(一种与焦虑和抑郁样行为以及G蛋白偶联受体功能相关的衔接蛋白 - 可能会调节这些效果。在这项研究中,我们通过测试野生型和全球P11敲除(KO)小鼠在氯吡啶酚,利培酮和氯氮平来评估了P11在氯氮平增强效应中的作用。我们还进行了结构和功能性脑成像。与我们期望类似焦虑的P11-KO小鼠会表现出增强的惊吓反应和对氯氮平的敏感性的增强,PPI测试表明,P11-KO小鼠对瑞治酮和氯氮平的PPI增强作用没有反应。成像揭示了P11-KO小鼠中不同的区域脑体积差异和降低的海马连通性,其氯氮平诱导的明显钝化的CA1区域变化。我们的发现突出了P11在调节氯氮平对感觉运动门控和海马连接性的影响中的新作用,从而为其功能途径提供了新的见解。
肠道菌群与人类健康之间的抽象联系在许多研究中得到了支持,例如神经系统疾病的发展。此链接称为“微生物群 - 脑轴”,是新兴研究领域的重点。微生物衍生的代谢产物以及肠道和神经免疫学代谢物在健康和许多疾病中调节该轴。的确,评估这些信号,无论是由微生物代谢产物还是神经免疫介质引起的,都可以显着增加我们对微生物群脑轴的了解。但是,这将需要开发适当的技术和潜在模型。在该领域中,研究源自菌群的诱导信号的方法仍然至关重要。本综述讨论了可用于研究微生物群脑相互作用的方法和技术。我们重点介绍了这些方法的几个备受推测的元素,其中包括基于PubMed的系统评价,在体内和体外模型中广泛使用的含义和视野。在微生物群 - 脑轴研究中的各种动物模型(斑马鱼,小鼠,犬,大鼠,兔子)的应用,其中强调了体外方法的实际例子和研究肠道脑通信的创新方法。特别是我们广泛讨论了“芯片上”设备及其在该领域的应用的潜力。总的来说,这篇评论阐明了最广泛使用的模型和方法,这是指导研究人员的合理选择,用于研究微生物群研究的策略。