在竞争性互动中,人类必须灵活地更新对他人意图的信念,以调整自己的选择策略,比如当相信对方可能会利用他们的合作性时。在这里,我们研究人类信念更新过程的神经动力学和因果神经基础。我们使用了一个改良的囚徒困境游戏,其中参与者明确预测同伴的行为,这使我们能够量化预期行为和实际行为之间的预测误差。首先,在 EEG 实验中,我们发现负向预测误差的内侧额叶负性 (MFN) 比正向预测误差更强,这表明这个内侧额叶 ERP 成分可能编码同伴的意外背叛。MFN 还能预测负向预测误差后的后续信念更新。在第二个实验中,我们使用经颅磁刺激 (TMS) 来研究背内侧前额叶皮质 (dmPFC) 是否在意外结果后有因果地实施信念更新。我们的结果表明,dmPFC TMS 削弱了负面预测误差后的信念更新和战略行为调整。总之,我们的研究结果揭示了预测误差在社交决策中的使用时间过程,并表明 dmPFC 在更新他人意图的心理表征方面发挥着至关重要的作用。
使用人类连接组计划多模态分区图谱,用脑磁图测量了 83 名执行视觉记忆任务的人类连接组计划参与者的 25 个腹侧流视觉皮层区域和 180 个皮层区域之间的层次组织。目的是通过这种快速神经成像方法,利用基于生成有效连接的全脑模型揭示层次组织。V1–V4 形成第一组互连区域。特别是 V4 与腹外侧视觉流具有连接:V8、梭状面部皮层和后下颞叶皮层 PIT。这些区域反过来与下颞叶皮层视觉区域 TE2p 和 TE1p 具有有效连接。TE2p 和 TE1p 然后与多模态的前颞叶区域 TE1a、TE1m、TE2a 和 TGv 具有连接。在腹内侧视觉流中,V1–V4 连接到腹内侧区域 VMV1–3 和 VVC。VMV1–3 和 VVC 连接到内侧海马旁回 PHA1–3,后者与 VMV 区域一起包括海马旁回场景区。内侧海马旁回 PHA1–3 区域与海马系统区域(外嗅皮层、内嗅皮层和海马)具有连接性。通过脑磁图测量的两个腹侧视觉皮层流的有效连接为通过 fMRI 测量的大脑系统的层次组织提供了支持,并为方向性提供了新的证据。
基因座 - 呼吸肾上腺素系统被认为与迷走神经刺激的临床作用有关。已知该系统可防止癫痫发育并引起长期塑性变化,尤其是随着海马中去甲肾上腺素的释放。然而,成为治疗者和作用机理的必要条件仍在研究中。使用MRI,我们评估了层层基因座的结构和功能特征以及在耐药药物或对治疗不反应的耐药性癫痫患者中白质层层层的微观结构特性。在这项试验研究中招募了23例抗药性癫痫患者宫颈神经刺激患者,其中包括13名响应者或部分响应者和10名无反应者。专用的结构MRI获取允许在体内定位层层层和其对比度的计算(LC完整性的公认标记)。基因座二氧化合物活动。最后,使用多壳扩散MRI来估计基因座 - 海马域的结构特性。比较了响应者/部分响应者和非反应者之间的这些特征,还探讨了它们与治疗持续时间的关联。在对治疗反应更好的患者中,分别在肠层基因座的左侧和右尾部分中发现了较低活性和较高对比度的趋势。最后,发现了较高的基因座 - 海马连接在其内侧部分双侧的二氧对比度增加,与治疗持续时间相关。
三种不同的脑神经调节运动。脑神经 III、IV 和 VI。脑神经 III 支配上直肌和下直肌,使瞳孔上下移动。脑神经 VI 支配外直肌,使瞳孔向外拉,然后脑神经 III 支配内直肌,使瞳孔向内拉。通过这种方式,人们可以通过观察是大运动受损还是协调受损来区分影响神经或通路的病变。
反复暴露于压力(慢性压力)会导致循环皮质醇水平过高,并对各种认知功能(包括长期记忆和导航)产生不利影响。然而,慢性压力是否会影响路径整合仍是一个悬而未决的问题,路径整合是一种导航策略,可能依赖于内侧内嗅皮层中网格细胞的功能。内嗅皮层是内侧颞叶的一个大脑区域,其中包含多种参与空间导航(和情景记忆)的细胞类型,以及大量皮质类固醇受体,使其成为皮质醇效应的潜在靶点。在这里,我们的目标是研究慢性压力与路径整合表现之间的关联。我们通过头发皮质醇浓度(生理测量)和感知压力问卷(主观测量)评估了 52 名年龄在 22 至 65 岁之间的女性参与者的慢性压力。使用虚拟归巢任务测量路径整合。线性混合模型揭示了与慢性压力相关的选择性损伤,这些损伤取决于错误类型和环境特征。当关注路径整合任务中的距离估计时,我们观察到与毛发皮质醇浓度的显著关系,这表明路径整合受损,尤其是在毛发皮质醇浓度高的参与者的难度较高的试验中。这种关系尤其出现在没有空间线索(边界或地标)的情况下,尤其是在报告主观经历高水平慢性压力的参与者中。这些发现符合慢性压力损害路径整合的假设,可能是通过影响内嗅网格细胞系统来实现的。
部署/FRG 联系人为 100 个,传出联系人为 35 个,则您将在此类别下的传入块中输入 25 个,传出块中输入 35 个。注意:示例:一封发送给名册上 100 人的电子邮件算作一个传出联系人。如果您有指挥网站或私人 Facebook 指挥网站,则无论有多少人注册了您的网站,您都只会将其列为传出联系人列中的一个社交媒体联系人。如果他们对您的帖子提出问题,那么您会在社交媒体列下或他们询问的主题下将他们算作传入联系人。
纹状体多巴胺信号传导。使用前摄取蛋白 - 碳报告小鼠系列,我们表征了小鼠背纹状体中PNOC mRNA表达的高度选择性的脑膜图模式,反映了PNOC的早期发育表达。在腹侧纹状体中,将PNOC表达聚集在伏隔核和内侧壳中,包括成年纹状体。我们发现PNOC TDTOMATO报告基因细胞在很大程度上包括多巴胺受体D1(DRD1)表达培养基的棘突投射神经元,位于背纹状体中,已知在
MACT-SEL MACT用于选择性注意力技能MAL运动活动LOG MD MD MEFT音乐执行功能训练MEG磁脑电图MEM音乐回声记忆训练MET代谢等效的MIDI MIDI乐器数字界面MIT旋律语调MIT旋律INDONAPIC MMIP音乐情绪诱导过程MMT情绪和记忆训练; musical mnemonics training MNT musical neglect training MPC music in psychosocial training and counselling MPC-MIV MPC mood induction and vectoring MPC-SCT MPC social competence training MRI magnetic resonance imaging MSOT musical sensory orientation training MUSTIM musical speech stimulation NMT neurologic music therapy OMREX oral motor and respiratory exercises PD Parkinson's disease PECS Picture Exchange Communication System PET positron emission tomography PNF proprioceptive neuromuscular facilitation PROMPT prompts for restructuring oral muscular phonetic targets PRS perceptual representation system PSE patterned sensory enhancement QoL quality of life QUIL quick incidental learning RAS rhythmic auditory stimulation RCT randomized controlled trial RMPFC rostral medial prefrontal cortex ROM range of motion RSC rhythmic speech cueing
音乐转调对工作记忆的要求很高,因为它涉及在唱歌或乐器演奏时将音符从一个音调(即音高音阶)心理转换为另一个音调。由于音乐转调涉及在心理上将音符调高或调低特定量,因此它可能与加法和减法的算术运算共享认知元素。我们比较了受过古典训练的音乐家在音乐转调和数学计算的高和低工作记忆负荷条件下的大脑活动。脑磁图 (MEG) 对任务和工作记忆负荷的差异很敏感。额枕连接在转调过程中高度活跃,但在数学计算过程中不活跃。在更困难的转调任务条件下,右侧运动区和运动前区高度活跃。多个额叶区域在各项任务中都高度活跃,包括在转调和计算任务期间的左侧内侧额叶区域,但仅在计算期间的右侧内侧额叶区域。在更困难的计算条件下,右侧颞区高度活跃。在连贯性分析和神经同步分析中,计算任务之间存在一些相似之处;然而,由于 MEG 的时间分辨率很高,延迟分析对计算任务中任务复杂性的差异很敏感。MEG 可用于检查音乐认知和音乐训练的神经后果。需要进一步系统地研究音乐和其他认知任务的高记忆负荷和低记忆负荷条件下的大脑活动,以阐明音乐家与非音乐家相比工作记忆能力增强的神经基础。
1。该指南近端部分的开槽区域有助于引用大转子的近端尖端。这是一个很好的地标,通常与股骨头的旋转中心一致。将圆锥体大小及其相应的雕刻线与转子的尖端保持一致。导向的内侧伸展上的缺口与著名直径的头部中心相对应。2。倾斜的表面提供了一个用于标记切割水平的平面,也可以用作锯刀片的切割表面。颈部切除是在下部角度表面进行的。3。导向的长尾巴用于与股轴轴对齐。它被设计为插入股骨后侧的软组织下。