将父本置于各种环境操纵之下表明,在雄性对后代的投资几乎仅限于精子的物种中,父系效应也可能非常重要。然而,父系效应是否也具有遗传成分(即父系间接遗传效应 (PIGE))在此类物种中仍不清楚,这主要是因为在区分基因的间接效应和直接效应方面存在方法学困难。然而,PIGE 可能很重要,因为它们有能力促进进化变化。在这里,我们使用果蝇遗传学来构建一个育种设计,可以对几乎完整的单倍体基因组(超过 99%)进行 PIGE 测试。使用这种技术,我们估计了四个种群中由于 PIGE 导致的雄性寿命差异,并将其与总父系遗传差异(父系间接和直接遗传效应之和)进行比较。我们的结果表明,总父系遗传差异的很大一部分来自 PIGE。对从单个种群随机抽取的 38 个单倍体基因组的筛选表明,PIGE 还会影响种群内寿命的变化。总之,我们的结果表明,PIGE 可能构成了表型变异的一个未被充分重视的来源。
将父本置于各种环境操纵之下表明,在雄性对后代的投资几乎仅限于精子的物种中,父系效应也可能非常重要。然而,父系效应是否也具有遗传成分(即父系间接遗传效应 (PIGE))在此类物种中仍不清楚,这主要是因为在区分基因的间接效应和直接效应方面存在方法学困难。然而,PIGE 可能很重要,因为它们有能力促进进化变化。在这里,我们使用果蝇遗传学来构建一个育种设计,可以对几乎完整的单倍体基因组(超过 99%)进行 PIGE 测试。使用这种技术,我们估计了四个种群中由于 PIGE 导致的雄性寿命差异,并将其与总父系遗传差异(父系间接和直接遗传效应之和)进行比较。我们的结果表明,总父系遗传差异的很大一部分来自 PIGE。对从单个种群随机抽取的 38 个单倍体基因组的筛选表明,PIGE 还会影响种群内寿命的变化。总之,我们的结果表明,PIGE 可能构成了表型变异的一个未被充分重视的来源。
1欧洲果蝇种群基因组学财团(Droseu),2阿什沃思实验室,爱丁堡大学进化生物学研究所,夏洛特·奥尔巴赫路,爱丁堡·奥尔巴赫路,爱丁堡EH9,英国3fl,英国3Fl,3弗尼Ge´nomes,Comportement et e´cologie,91198 Gif-Sur-Yvette,法国,5个生物学系,乔治敦大学,华盛顿特区乔治敦大学,美国6号生物学系,隆德大学进化生态学部,So so。LVEGATAN37,SOULUND 223 62,SWEDEN,SWEDEN,SWEDEN,SWEDEN,SWEDEN,7级生物学。 Maximilians-Universita¨t Mu¨ nchen, Planegg, Germany, 8 Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy, 9 Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA, 10 Institute of Integrative Biology, University of Liverpool,利物浦L69 7ZB,英国,11 UMR CNRS 6553 Ecobio,Ecobio,Uniestite de Rennes1,法国雷恩斯,法国,12个生物学研究所“ Sinisa Stankovic”研究所,塞尔比亚国立国家研究所,贝尔格莱德大学,贝尔格莱德大学,Bulevar Despota Stefana 142,Belgrade,Belgrade,Belgrade,serbii forgrade forgrade forgrade塞尔维亚贝尔格莱德(Belgrade),芬兰Jyvaâskyla的生物与环境科学系14号,乌克兰国家南极科学中心15
摘要:果蝇果蝇(果蝇)模型正在作为研究肿瘤进展的基本机制并鉴定新的治疗剂的强大工具。快速且价格便宜,可以比脊椎动物生物进行遗传和药物筛查。这种基于全生物的药物筛查允许评估药物吸收和毒性,从而减少了假阳性的可能性。在许多上皮癌症中,Wnt和Ras信号通路中的激活突变很常见,当在成年果蝇中肠驱动时,它会诱导侵袭性的肠道肿瘤样产物,这些产物概括了人类结肠癌(CRC)的许多方面。在这里,我们采用了果蝇CRC模型,其中肿瘤细胞用GFP和萤光素酶报告基因标记,并开发了新型的高通量测定法以量化肿瘤负担。利用这些测定法,我们发现果蝇CRC模型对使用标准CRC-drugs的治疗迅速响应,为未来快速遗传和药物筛查打开了大门。
摘要:果蝇果蝇(果蝇)模型正在作为研究肿瘤进展的基本机制并鉴定新的治疗剂的强大工具。快速且价格便宜,可以比脊椎动物生物进行遗传和药物筛查。这种基于全生物的药物筛查允许评估药物吸收和毒性,从而减少了假阳性的可能性。在许多上皮癌症中,Wnt和Ras信号通路中的激活突变很常见,当在成年果蝇中肠驱动时,它会诱导侵袭性的肠道肿瘤样产物,这些产物概括了人类结肠癌(CRC)的许多方面。在这里,我们采用了果蝇CRC模型,其中肿瘤细胞用GFP和萤光素酶报告基因标记,并开发了新型的高通量测定法以量化肿瘤负担。利用这些测定法,我们发现果蝇CRC模型对使用标准CRC-drugs的治疗迅速响应,为未来快速遗传和药物筛查打开了大门。
从果蝇中的基因组DNA制备该方案可以从40-100 mg的成年蝇(蝇重约1 mg)中分离出高度纯的基因组DNA。首先,在核保持完整的条件下,蝇是在缓冲液中磨碎的,然后使用SDS将DNA从断裂的组织中释放出来。接下来,进行常规的苯酚提取(去除蛋白质)和氯仿提取(去除苯酚),并用乙醇沉淀核酸。离心后(去除脂质和小细胞分子),将核酸沉淀溶解并用rnasea(降解RNA)和蛋白酶K(降解rNASEA和其他蛋白质)串行消化。其他苯酚/氯仿沉淀和乙醇沉淀产生高度纯化的基因组DNA。我们的目标是完整的基因组DNA - 避免通过过度的移液和涡旋剪切DNA。1。将50个成年果蝇放入装有微型植物的1.5 mL微管中,并在500 µl的缓冲液中彻底磨碎A。用500 µl的缓冲液B冲洗杵,将冲洗液加入匀浆中;通过反转微管轻轻混合。在37°C下孵育1小时2。切断P1000微量移动尖端的尖端,然后使用它将匀浆(500 µL)的一半转移到第二个微管中。苯酚通过在每个管,帽和混合物中添加相等的体积(500 µL)Te饱和苯酚来提取样品。离心5分钟。3。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。离心5分钟。4。5。通过在每个管,帽和混合物中添加等体积(500 µl)苯酚的苯酚来重新提取样品。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。氯仿通过在每个管,帽和混合物中添加等体积(500 µl)的氯仿提取样品。离心1分钟。使用截止尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。将NaCl添加到0.1m的最终浓度。乙醇通过在每个微管中添加2卷(〜850 µl)的EtOH来沉淀您的样品;轻轻混合。观察核酸的沉淀。将微管放在-20°C过夜以鼓励沉淀。6。离心10分钟。丢弃上清液;短暂地干燥SpeedVac中的颗粒(将显示使用)。7。如下,将样品组合到单个微管中。然后,使用截止P200尖端将500 µl TE缓冲液加到一个管中