果蝇被广泛用作所有生物医学研究领域的模型生物。在神经科学领域,人们利用这种小果蝇获得了大量信息,包括识别调节行为的神经回路、揭示其遗传基础以及所涉及的分子机制。尽管有大量遗传工具可用于操纵和推断神经元活动,但对果蝇神经元电特性的直接测量却落后了。这是因为在果蝇中枢神经元等小细胞中进行电记录非常复杂。膜片钳技术提供了直接测量果蝇神经元电特性的独特可能性。此分步方案提供了掌握此技术的详细建议。
Wnt 通路是果蝇于 1982 年发现的一种细胞间分子信号通路,在包括人类在内的整个动物界中发挥着重要作用。2 Wnt 信号通路参与胚胎发育和生理稳态,但其失调与肿瘤的发生和发展有关。3–6 Wnt 信号通过至少三种不同的细胞内通路传输,包括经典 Wnt/β-catenin 信号通路、非经典 Wnt/Ca2+ 通路和非经典 Wnt/PCP(平面细胞极性)通路。它们都在组织和器官形成中发挥重要作用,并充当细胞骨架的调节剂。Wnt/β-catenin 通路因其在 CRC 中的重要性而最为人所知,本综述将专门讨论它。
甲虫巨星Jannaschi(古细菌)1.7 100-200 X / 0.1-0.2 E. Coli K12(细菌)4.6 100-200× / 0.5-0.5-0.5-0.5-0-0。 1-1.2秀丽隐杆线虫(线虫蠕虫)97 80-100-100× / 8-10拟南芥(植物)125 80-100-100× / 10-13果蝇黑色素果(果蝇)180 80-100-100-100× / 15-18 Danio Rerio(斑马鱼)1400 30-50× / 42-70 HOMO SAPIENS(HUMAN)3300 30× / 99(浅层); ≥80×/≥264(DEP)Hordeum dufgarre(大麦)4200 30× / 126 BUFO BUFO(TOAD)5000 30× / 150× / 150× /
第 1 节讨论了与生物医学研究中常用的无脊椎动物模型的冷冻保存和其他长期保存方法相关的主题,包括果蝇、秀丽隐杆线虫和海胆。会议报告重点介绍了保存这些生物的现行方法和局限性,以及从保存其他无脊椎动物(如缓步动物、蚊子和黑水虻)中吸取的经验教训。会议讨论了干燥和休眠期作为保存方法的潜力。与会者讨论了该领域的差距和挑战,包括准确传播协议所需的培训活动;专门化与通用协议开发的好处;难以繁殖和冷冻保存的菌株和生物;以及与存储空间、样品管理和质量控制相关的问题。
一百多年来,果蝇(Drosophila melanogaster)一直是生物和生物医学研究的有力模型生物,因为它与人类有许多遗传和生理相似之处,并且可以使用复杂的技术来操纵其基因组和基因。果蝇研究界迅速采用了 CRISPR 技术,自首次在果蝇中发表成簇的规律间隔短回文重复序列 (CRISPR) 以来的 8 年里,他们探索并创新了诱变、精确基因组工程等方法。此外,由于寿命短和遗传学的便利性,果蝇成为体内应用和改进快速发展的 CRISPR 相关 (CRISPR-Cas) 工具的理想试验场。在这里,我们回顾了 CRISPR 试剂输送方面的创新、切割和同源定向修复 (HDR) 效率的提高以及标准 Cas9 方法的替代方案。虽然重点主要放在体内系统上,但我们也描述了果蝇培养细胞的作用,它既是评估新 CRISPR 技术过程中不可或缺的第一步,也是全基因组 CRISPR 池筛选的平台。
共济失调是一种罕见的人类疾病,意味着没有协调。是由A-T基因的突变引起的,A-T基因是导致激酶的EN编码的。Purkinje和颗粒神经元在小脑中逐渐退化,影响手指,手臂,腿部,言语,听力和眼睛以及视线。共济失调可以是遗传性的或零星的。有七种类型的共济失调,其症状各不相同,但具有关于身体运动缺乏协调性和弱化的IM Mune系统的共同点,使该人容易受到许多疾病和早期死亡的影响。共济失调的人的预期寿命最早可能是20多岁的或60多岁的,尽管他们的生活很常见。对共济失调知之甚少,并且无法治愈这种轻松的方法。围绕协调丧失的治疗是基本的,因为它仅限于使用自适应辅助装置,并且需要采取多种类型的药物来治疗每种症状,例如分别进行语音,抑郁,震颤等。atm(ataxia telangiectasia突变)是果蝇中必不可少的果蝇蝇基因,代码与人类中的激酶结构相似。它在氧化应激,免疫力,DNA损伤控制,RNA生物发生等中起关键作用。了解A-T中神经退行性的潜在病理,果蝇Melanogaster被用作本研究的模型生物。研究人员使用了对温度敏感的ATM等位基因(ATM8)和RNA干扰(RNAI),以有条件地使神经胶质细胞中的ATM失活。因此,有三个主要实验组:纯合子ATM8突变体(ATM8),杂合子ATM8突变体(ATM8/+)和repo-ATMI(敲低)。这些表型激活了神经胶质细胞中的先天免疫反应,从而在阿尔茨海MER病的苍蝇模型中引起感光细胞神经退行性,这表明先天免疫反应(IMD和TOLL途径)激活与神经变性之间存在致病关系。
孟德尔遗传学通常通过学生在实验室中对活果蝇(果蝇)进行实验来教授。这种方法可能受到机构资源和果蝇生命周期所要求的时间的限制。FlyBuilder 通过使用还原论纸娃娃果蝇工具包克服了这些实际限制。在这里,我们提供 FlyBuilder 作为免费的多模态遗传学课程,可以将其集成到现有课程中。FlyBuilder 使用果蝇平衡染色体和可见的“标记”突变来说明和应用隐性致死、基因型-表型配对、表型显性和果蝇转基因的例子。我们在两所大学的入门、中级和高级主题生物学和神经科学课程中使用了 FlyBuilder,它获得了学生的积极反馈和理解。首页
通过同源定向修复 (HDR) 进行基因组编辑使得对基因序列进行精确而慎重的修改成为可能。CRISPR/Cas9 介导的 HDR 是实现这一目标的最简单方法。然而,在提高效率和扩大对果蝇以及其他果蝇物种的任何遗传背景的适用性方面仍然存在技术挑战。为了解决这些问题,我们开发了一种两阶段标记辅助策略,以促进果蝇的精确、无疤痕编辑,而几乎不需要分子筛选。使用与重组 Cas9 蛋白复合的 sgRNA,我们分析了每个 sgRNA 的基因组切割效率。然后,我们使用有效切割目标基因的 sgRNA 和转化标记的新应用进行 HDR。这些新工具可用于在感兴趣的区域进行单个更改或一系列等位基因替换,或创建其他遗传工具,例如平衡染色体。
动物的身体影响神经系统如何产生行为。因此,2对感觉运动行为神经控制的详细建模需要3个身体的详细模型。在这里,我们在Mujoco Physics发动机中贡献了4种水果果蝇Melanogaster的解剖学生物力学全身模型。我们的模型是通用的,5可以在陆地和空气中模拟各种频率行为。我们通过模拟逼真的运动和步行来证明模型的6个通用力。为了支持7这些行为,我们通过流体力和8种粘附力的现象学模型扩展了穆霍科。通过数据驱动的端到端强化学习,我们证明了9这些进步使能够基于高级转向控制信号的复杂轨迹进行现实运动10的神经网络控制器的训练。我们通过训练12个模型来证明11使用视觉传感器以及重复使用预训练的通用式旋转控制器。我们的项目是一个开源平台,用于在体现的上下文中对感觉运动行为的神经控制建模。14
抽象工程的遗传不兼容(EGI)是一种创造类似物种的性繁殖障碍的方法。它具有在害虫控制中的应用,仅释放Egi雄性时模仿无菌昆虫技术。这可以通过向EGI菌株引入条件女性致死性来促进这一点,从而产生性行为不兼容的男性系统(SSIMS)。在这里,我们通过将四环素控制的女性致死性构建体与模型昆虫果蝇果蝇中的pyramus -argeting egi系相结合,证明了概念证明。我们表明,这两个功能(不兼容和性别分类)都在SSIMS系列中坚固,并且这种方法在CAGE实验中有效抑制人群。此外,我们表明,SSIMS雄性与野生型男性与野生型女性(包括精子竞赛水平)的繁殖保持竞争。