摘要食品排毒中的抗氧化剂可以使细胞活性氧(ROS)和保护生物体。类黄酮是自然界重要的抗氧化剂起源之一,具有各种促进健康的功能,并且是模型和医疗植物中的热门研究主题。但是,主要粮食作物的小麦(Triticum Aestivum L.)的进展需要赶上。在这里,我们收集了200多个现代中国小麦品种,并分析了它们的类黄酮。一些小麦类黄酮在维生素C上显示出较高的ROS-氧化活性,但它们在谷物中的含量约为幼苗(小麦草)的1/20。小麦草的类黄酮提取物(很少)以剂量依赖性和性别特异性的方式成功拉长了模型动物的寿命(果蝇Melanogaster,W 118)。我们表征了主要的类黄酮和孤立的品种,积累了更多类黄酮。此外,茉莉酸(JA)处理诱导类黄酮生物合成,产生更多的类黄酮和较高的抗氧化电位。这项工作为有希望的小麦品种提供了信息,并采取了进一步的增强策略,以增强促进健康的潜力。
对宿主的讨论 - 蚊子载体中的微生物相互作用经常以对它们传播的人类病原体的重点主导(例如疟原虫寄生虫和arbovirus)。然而,是载体与其可传染病病原体之间相互作用的基础是一种生命的昆虫生理和与细菌和真菌世界相互作用的生理学,包括共生,杂物,原发性以及原发性和机会性病原体。 在这里,我们回顾了与蚊子相关的细菌和真菌的了解,重点是伊迪斯属的成员。 我们探讨了微生物对蚊子的相互影响,而蚊子对微生物的影响。 我们分析了细菌和真菌共生体在蚊子发育中的作用,它们对载体能力的影响以及它们作为副根生物发生的生物防治剂和矢量的潜在用途。 我们探索了蚊子肠道的隔室,发现了免疫效应子和调节剂的区域化,从而产生了抗药性和免疫耐受性的区域,蚊子宿主可以控制并探讨其微生物共生体。 我们检查了基本表达的抗菌肽的解剖学模式。 最后,我们回顾了诱导型抗菌肽和规范免疫信号通路之间的关系,将蚊子中每条途径上的每个途径的当前知识与模型昆虫的果蝇Melanogaster进行比较和对比。 本文是主题问题的一部分,“雕刻微生物组:宿主因素如何确定和响应微生物定植”。是载体与其可传染病病原体之间相互作用的基础是一种生命的昆虫生理和与细菌和真菌世界相互作用的生理学,包括共生,杂物,原发性以及原发性和机会性病原体。在这里,我们回顾了与蚊子相关的细菌和真菌的了解,重点是伊迪斯属的成员。我们探讨了微生物对蚊子的相互影响,而蚊子对微生物的影响。我们分析了细菌和真菌共生体在蚊子发育中的作用,它们对载体能力的影响以及它们作为副根生物发生的生物防治剂和矢量的潜在用途。我们探索了蚊子肠道的隔室,发现了免疫效应子和调节剂的区域化,从而产生了抗药性和免疫耐受性的区域,蚊子宿主可以控制并探讨其微生物共生体。我们检查了基本表达的抗菌肽的解剖学模式。最后,我们回顾了诱导型抗菌肽和规范免疫信号通路之间的关系,将蚊子中每条途径上的每个途径的当前知识与模型昆虫的果蝇Melanogaster进行比较和对比。本文是主题问题的一部分,“雕刻微生物组:宿主因素如何确定和响应微生物定植”。
库蚊是多种人类和动物疾病的全球传播媒介,包括西尼罗河病毒、淋巴丝虫病和禽疟疾,对公共卫生、牲畜、伴侣动物和濒危鸟类构成持续威胁。虽然杀虫剂抗药性的不断增加威胁到库蚊的控制,但 CRISPR 基因组编辑工具的进步促进了替代遗传策略(如基因驱动系统)的发展,以对抗疾病媒介。然而,尽管基因驱动技术在其他蚊子中发展迅速,但在库蚊方面却进展缓慢。在这里,我们开发了库蚊特异性 Cas9/gRNA 表达工具包,并使用基于定点同源性的转基因来生成和验证库蚊 Cas9 表达系。我们表明,gRNA 支架变体可提高库蚊和果蝇的转基因效率,并提高果蝇的基因驱动性能。这些发现支持未来控制库蚊的技术开发,并为改进其他物种的这些工具提供宝贵的见解。
图 1 人类与非人类物种之间共享的基因。系统发育树标注了每个物种中具有 1:1 直系同源物的人类基因百分比(以数字和每个圆圈的填充比例显示)。与人类共享的 1:1 直系同源物的绝对数量绘制为每个圆圈的颜色。使用 orthogene R 包构建。92 关键词:Anolis carolinensis,绿变色蜥;Bos taurus,牛;Caenorhabditis elegans,蛔虫;Canis lupus familiaris,狗;Danio rerio,斑马鱼;Drosophila melanogaster,果蝇;Equus caballus,马;Felis catus,猫;Gallus gallus,鸡;Homo sapiens,人类;Macaca mulatta,恒河猴;Monodelphis domestica,灰色短尾负鼠;小家鼠 (Mus musculus),家鼠;鸭嘴兽 (Ornithorhynchus anatinus),鸭嘴兽;黑猩猩 (Pan troglodytes),黑猩猩;褐家鼠 (Rattus norvegicus),褐家鼠;酿酒酵母 (Saccharomyces cerevisiae),面包酵母;粟酒裂殖酵母 (Schizosaccharomyces pombe),裂殖酵母;野猪 (Sus scrofa),猪;热带爪蟾 (Xenopustropicalis),西方爪蟾。
塑料污染是一个不断增长的问题,可能威胁野生动植物和人类。环境质量废物被降解为称为微塑料(MNPLS)的小颗粒,由于它们的尺寸很小,可以将其内部内部化为裸露的生物体,从而增加与暴露相关的风险。要适当确定相关的健康风险,必须获得/测试代表性MNPLS的环境样本。到了这一目标,我们获得了通过打磨商用水聚对苯二甲酸酯(PET)瓶子而获得的NPL。这些真实的PETNPL被广泛表征,并使用果蝇Melanogaster探索了它们的潜在危险影响。为通过消化道和整个身体突出内部化,使用了透射电子显微镜(TEM)和共聚焦显微镜。尽管观察到的Petnpl有效摄取到共生细菌,肠细胞和血细胞中,但暴露未能降低植物的存活率。然而,Petnpls暴露扰乱了应力,抗氧化剂和DNA修复基因的表达,以及在对物理肠道损伤反应的基因中。重要的是,由于暴露于PETNPLS,氧化应激和DNA损伤诱导均显着增加。
摘要:后生动物已经制定了保护自己免受致病攻击的策略。这些保存的机制构成了由先天和适应性反应组成的免疫系统。在两种类型中,先天免疫系统涉及快速反应的激活。NF-κB信号通路在感染过程中被激活,并导致及时控制的免疫反应基因的表达。然而,当不符合措施时,NF-κB途径的激活可能是有害的。他们的调节对于防止炎症性疾病或癌症的发展是必要的。介导昆虫和哺乳动物中免疫机制的NF-κB途径的相似性使果蝇Melanogaster成为研究先天免疫反应和学习一般机制的合适模型,这些模型也与人类相关。在这篇综述中,我们总结了中央NF-κB轨道的动态调节的了解,并详细介绍了IMD途径的分子水平。我们报告了核蛋白Akirin在NF-κB调节中的作用。果蝇模型的使用允许理解该中央NF-κB途径的细节调节。
Gasanov Ralphreed(阿塞拜疆) 白俄罗斯国立大学二号教学楼 2 楼 203 室 09:30-09:45 山楂基因组及其对该国人口的育种价值研究 Guseynova Nazaket 巴库国立大学,阿塞拜疆 09:45-10:00 DJ-1 和硫化物蛋白在果蝇氧化应激管理中的作用 Alishova Gular、Sangeeta Chawla 约克大学,英国 10:00-10:15 硬粒小麦(Triticum durum Desf.)产量参数的聚类分析 Safarova Aliyeva Gamar 巴库国立大学,阿塞拜疆 10:15-10:30 桑蚕品种和杂交种遗传多样性研究 Ramazanova Jala、Mammadov Ayaz 西里海大学,阿塞拜疆阿塞拜疆里海地区鲟鱼的养殖特征 Rzayev Elshad,Taghiyeva Safada 阿塞拜疆养鱼场,阿塞拜疆
引入尽管居住在具有高重复密度的域中,但果蝇Melanogaster muller f元素基因还是在与正念基因相同的定量范围内表达(Riddle等人。2012)。比较Muller F和D元素基因的转录起始位点(TSS)附近的基序的类型和分布可以帮助阐明使Muller F元素基因在异性域中起作用的因素。主题分析的第一步是产生TSS的高质量注释,以定义搜索保守基序的区域。TSS的比较注释比编码区域的注释更具挑战性,因为5'和3'未翻译区域(UTR)的发展比编码区域更快,并且提供了支持注释的外部证据较少。例如,大多数基因查找器仅预测编码区域,而RNA-seq读取覆盖率数据通常没有提供足够的证据来推断TSS的精确位置。因此,与编码区域的注释相比,TSS的注释具有更高的不确定性程度。在某些情况下,我们可能只能定义一个可以找到TSS的基因组区域。本演练将说明使用D. biarmipes muller f element Project contig35 [8月。 2013(GEP/DOT)组件]。
胰岛素样肽(ILP)在脊椎动物的生长、代谢和繁殖中起着关键作用。在甲壳类动物中,一种类型的 ILP,胰岛素样雄激素腺激素(IAG)据报道与性别分化有关。然而,其他类型 ILP 的功能很少报道。在这里,我们在脊尾白虾(EcILP)中鉴定了另一种类型的 ILP,它是果蝇 ILP7 的直系同源物。序列表征和表达分析表明,EcILP 的异二聚体结构和表达谱与脊椎动物的胰岛素/IGF 和昆虫 ILP 相似。利用 CRISPR/Cas9 基因组编辑技术,我们生成了 EcILP 敲除(KO)对虾。EcILP -KO 个体的生长抑制性状和死亡率明显高于正常组。此外,通过RNA干扰(RNAi)敲低EcILP导致生长速度减慢,死亡率增加。这些结果表明EcILP是脊尾棘鱼重要的生长调节剂。
表 2. 支持基因注释的证据。手工注释的柑橘木虱 Wnt 通路基因。总共有 24 个基因模型。每个基因模型都分配了一个标识符,并列出了用于验证或修改基因模型结构的证据。还列出了最能支持手工注释的 MCOT 转录组标识符。当存在从头转录组、Iso-Seq、RNA-Seq 和直系同源物支持的证据时,表中会标记“X”。MCOT:基于基因组 MAKER、Cufflinks、Oases 和 Trinity 转录本预测的综合转录组;MAKER:基因预测;从头转录组:使用 Iso-Seq 长读和 RNA-Seq 数据的独立转录组;Iso-Seq 转录本:用 Pacific Biosciences 技术生成的全长转录本; RNA-Seq:映射到基因组的读取也用作剪接点的支持证据;直系同源物证据:来自相关半翅目物种和果蝇的蛋白质。
