我们的目标是,有朝一日,我们的产品和包装只使用可回收和可再生材料。在努力实现这一目标的同时,我们将继续负责任地采购矿物,在供应链中进行环境和人权尽职调查,考虑对周边社区的人权影响,并为整个行业在负责任的矿物采购方面取得进展创造机会。就像我们在整个 Apple 供应链中所做的那样,我们利用一套全面的工具来推动实现这些目标的进展。
在这项研究中,我们对在铜(CU)冶炼过程中生产的商业FGD石膏进行了全面检查,并通过探索这些金属不症状的分区和命运来研究其作为钙(CA)富含钙(CA)的材料的潜在用途。所得的碳化端产品显示出71.1%的碳酸钙(CACO 3)含量,具有相对较低的CO 2转化率,这可能归因于商业FGD-GYPSUM中金属杂质的存在。这些金属杂质中的大多数是碳酸过程的输入,源自母体FGD-gypsum矩阵。这导致FGD石膏内的离子强度增加,可能阻碍二氧化碳(CO 2)从气相到水相扩散。在CO 2转化的各个阶段,主要,次要和微量元素的形成分配和检查使我们能够提出四种影响碳化效率的潜在反应途径:(i)金属氧化物的形成,(ii)金属氧化物和氧化羟化物的产生,(III)(III)(iii)金属成分元素的开发(III)元素的开发(IIV)和(IIV)的发展。商业fgd-gypsum适合在非危害废物垃圾填埋场接受。但是,必须强调商业FGD-GYPSUM中的浸出值超过惰性范围和非危害废物标准。尽管碳酸盐端产品的大多数重金属浸出值保持在非危害限制以下,但从碳酸盐端产品中释放一些重金属浸出物可能会限制这些材料的重用选择。
5 Arthur McClelland,6 David Lageson和7 Malcolm W McGeoch 1分子和蜂窝生物学系,哈佛大学,牛津街52号,美国剑桥市52号,美国02138,美国和高能物理学部,史密斯史密森学会天文学天文学天文学天文学天文学天文学和史密斯郡的史密斯和史密斯史密斯郡史密斯郡的史密斯式史密斯郡,60岁,cambridge st,cambridge st,cambridge s.2 LRL-CAT,Eli Lilly and Company,Advance Photon Source,Argonne National Laboratory,S。Cass Avenue,Lemont,Lemont,IL,60439 3,4钻石光源,Harwell Science and Innovation Campus,DIDCOT,OX11 0de,UK,UK OX11。5纳米级系统中心,哈佛大学,牛津街11号,莉丝·G40,马萨诸塞州剑桥,美国02138,美国。6地球科学系,226 Traphagen Hall,P.O。 框173480蒙大拿州立大学,Bozeman,MT 59717。 7 Plex Corporation,Martine St. 275,Suite 100,福尔里弗,马萨诸塞州02723,美国。 *通讯作者。 电子邮件:julie.mcgeoch@cfa.harvard.edu摘要血糖素是甘氨酸和铁的太空聚合物,已在碳质的软骨陨石Allende,Acfer 086,Kaba,Kaba,Sutter's Mill and Guetueil中鉴定出来。 其核心形式的质量为1494Da,基本上是一对由铁原子在两端连接的反甘氨酸对。 聚合物形成两维晶格,vertex间距离为4.9nm。 此处,将陨石的提取技术应用于2.1GYA化石质膜石,以通过质谱法揭示血糖素的存在。 来自最近(3,000A)基质岩的完整Ooids对X射线的响应表现出相同的可见血糖素荧光,就像来自Orgueil Meteorite的完整晶体。6地球科学系,226 Traphagen Hall,P.O。框173480蒙大拿州立大学,Bozeman,MT 59717。 7 Plex Corporation,Martine St. 275,Suite 100,福尔里弗,马萨诸塞州02723,美国。 *通讯作者。 电子邮件:julie.mcgeoch@cfa.harvard.edu摘要血糖素是甘氨酸和铁的太空聚合物,已在碳质的软骨陨石Allende,Acfer 086,Kaba,Kaba,Sutter's Mill and Guetueil中鉴定出来。 其核心形式的质量为1494Da,基本上是一对由铁原子在两端连接的反甘氨酸对。 聚合物形成两维晶格,vertex间距离为4.9nm。 此处,将陨石的提取技术应用于2.1GYA化石质膜石,以通过质谱法揭示血糖素的存在。 来自最近(3,000A)基质岩的完整Ooids对X射线的响应表现出相同的可见血糖素荧光,就像来自Orgueil Meteorite的完整晶体。框173480蒙大拿州立大学,Bozeman,MT 59717。7 Plex Corporation,Martine St. 275,Suite 100,福尔里弗,马萨诸塞州02723,美国。*通讯作者。电子邮件:julie.mcgeoch@cfa.harvard.edu摘要血糖素是甘氨酸和铁的太空聚合物,已在碳质的软骨陨石Allende,Acfer 086,Kaba,Kaba,Sutter's Mill and Guetueil中鉴定出来。其核心形式的质量为1494Da,基本上是一对由铁原子在两端连接的反甘氨酸对。聚合物形成两维晶格,vertex间距离为4.9nm。此处,将陨石的提取技术应用于2.1GYA化石质膜石,以通过质谱法揭示血糖素的存在。来自最近(3,000A)基质岩的完整Ooids对X射线的响应表现出相同的可见血糖素荧光,就像来自Orgueil Meteorite的完整晶体。X射线分析证实了在4.9nm间间距的内部3维晶格中存在的存在,与陨石晶体中晶格的间距匹配。FTIR测量的酸处理的Ooid和Sutter's Mill Merteeritic晶体都通过分裂的酰胺I带的存在表明,具有扩展的反平行β片结构。似乎很有可能从天生时代开始的大量碳质源材料剩下的沉积碳酸盐中的血糖素痕迹,并且可能影响了Ooid的形成。引言血糖素是含铁的聚合物,已在五种原始类型的碳质软化陨石的提取物中鉴定出来,它们没有广泛的水性或热改变。在为这些“石质”陨石开发了有效的提取和分析技术后,我们将它们应用于2.1GYA化石纤维岩,然后将其用于当今的浮游物,以询问是否有任何痕迹的
(((适合)没有金属冶炼厂或炼油厂 /地区 /地区RMAP* 1 Tungsten A.L.M.T.
准确的品种识别是涉及葡萄藤资源和衍生产品的每个过程的必不可少的要求。在过去几年中取得的进步允许对能够鉴定葡萄干品种的多个分子标记物进行分析。尽管为此目的建立了建议的九种微卫星(SSR)标记的推荐集,但它们使用从必须的DNA和葡萄酒样品提取的DNA进行了有效的应用仍然是一项艰巨的任务。这项工作旨在根据适用于使用叶子,必须和葡萄酒样品的SSR标记来开发高分辨率熔解(HRM)测定法。使用的葡萄藤品种是赤霞珠,图里加·弗兰卡(Touriga Franca),图里加(Touriga Nacional)和鲁菲特(Rufete)。总共使用12个SSR标记来筛选品种:OIV推荐的九个标记(VVMD5,VVMD7,VVMD25,VVMD27,VVMD27,VVMD28,VVMD28,VVMD32,VVS2,VVS2,VRZAG62,VRZAG62和VRZAG79)和VRZAG79)和三个标记5的长度和三个标记的长度和3个标记和vrifs and and ockrif和thend and offocroff和(vriff 5) VCHR9A)。来自葡萄酒样品的DNA多重PCR扩增的结果表明,这三个标记的性能优于九个已建立的SSR标记。HRM分析是针对标记VVIV35,VCHR5C和VCHR9A的,成功地区分了必须DNA样品中的品种组成。使用葡萄酒DNA进行了有希望的结果,在该葡萄酒中,HRM-VCHR9A测定法被证明具有最高的判别能力。需要在大量品种中应用HRM-SSR分析,以探索整个葡萄酒链中对葡萄指纹应用的适用性。总体而言,提出的小型SSR制造商可以更适合于葡萄酒DNA分析。此处介绍的HRM-SSR方法提供了快速的结果,从而使必DNA中的品种组成完全歧视。它也表明是使用葡萄酒DNA区分品种的有前途的工具,这项任务通常受到葡萄酒样品的固有复杂性的阻碍。
,全球电池的需求很高,这是由于不断增长的环保电动汽车的行动而驱动。作为最大的镍生产国的国家,印度尼西亚可以开发将生镍制成的技术,将其制造成世界电池的原材料,直到2040年。其中大量会影响印度尼西亚外国投资的扩散。本文将讨论印尼政府通过国际论坛和双边合作,尤其是与中国恢复后期199年经济的成功。对该主题的分析使用定性方法来探索成功并进一步影响。然后,经济外交和国家经济安全的概念成为分析工具,以加强作者关于在印度尼西亚过多投资的长期影响的论点,尤其是与中国拥有的镍冶炼厂的合作。
摘要。本文介绍了为模拟不锈钢 SS316L 定向能量沉积中形成的熔池中的流体流动和传热而开发的数值模型。该模型结合了重要的热量和动量源项。能量源项包括激光能量、相变潜热、对流热损失、辐射热损失、蒸发热损失以及由于熔融颗粒沉积到熔池中而增加的能量。动量源项是由表面张力效应、热毛细(Marangoni)效应、热浮力、相变引起的动量衰减、熔融颗粒动量以及由于蒸发引起的反冲效应引起的。模拟表明,熔池中预测的流动和传热会影响最终的形状和尺寸。在当前采用的工艺参数下,熔池细长、宽而浅,具有凹陷的自由表面和向外的对流。向外流动是由熔池中心的高温主导区域引起的,因此表面张力的温度梯度为负。
摘要 许多工艺都可用于制造功能梯度材料。其中,增材制造似乎是命中注定的,因为它可以近净成形制造复杂几何形状,并且有可能在一个部件中应用不同的材料。通过逐层调整起始材料的粉末成分,可以实现宏观的阶梯式梯度。为了进一步改善阶梯式梯度,必须提高原位混合程度,但根据现有技术,这种提高是有限的。本文介绍了一种通过应用激光重熔 (LR) 来提高熔池中原位材料混合程度的新技术。在激光粉末床熔合工艺中,使用纯铜和低合金钢研究了分层 LR 对界面形成的影响。随后进行了横截面选择性电子显微镜分析。通过应用 LR,混合程度得到增强,材料之间的反应区厚度也增加了。此外,界面处还形成了额外的铜和铁基相,导致化学成分梯度比没有 LR 的情况更平滑。Marangoni 对流和热扩散是观察到的效果的驱动力。
数字PCR(DPCR)是需要对目标分子绝对定量或检测罕见事件的研究和诊断应用的强大工具,但是可以在测定中进行区分的核酸靶标数量限制了其实用性。对于大多数DPCR系统,每个目标都会在光通道中检测到一个目标,并且目标总数受到平台上光通道的数量的限制。高阶多路复用有可能显着增加DPCR的实用性,尤其是在样本有限的情况下。多路复用的其他潜在收益包括较低的成本,更多的探针生成的其他信息以及较高的吞吐量。为了满足这种未满足的需求,我们开发了一种新颖的基于熔体的发夹探针设计,以提供多重多重数字PCR的强大选择。在16孔微流体数字PCR平台中,使用三个基于熔体的发夹探针的原型多重数字PCR(MDPCR)测定方法准确区分并量化了每个孔的12个核酸靶标。对于具有10,000个人类基因组当量的样品,空白极限的探针特异性范围为0.00% - 0.13%,检测分析限制的范围为0.00% - 0.20%。实验室间的可重复性非常好(r 2 = 0.997)。重要的是,这种新型基于熔体的发夹探针设计具有超出该原型测定的12个目标/孔的多路复用的潜力。具有出色性能特征的易于使用的MDPCR技术有可能彻底改变数字PCR在研究和诊断环境中的使用。