增材制造金属的机械性能各向异性有几个物理原因。这些原因包括但不限于方向依赖的晶粒和相形态、晶体结构、定向孔隙率/缺陷以及与熔池、分层微观结构相关的异质性。所有这些在大多数增材制造工艺中都很普遍,很难区分它们在机械各向异性中的作用。本综述重点介绍那些试图或合理地隔离其中一个或两个来源的研究,而不是简单地报告机械性能的趋势。这不是一份涵盖所有增材工艺或机械性能的详尽综述;主要评估的是激光粉末床熔合 (LPBF) 金属和拉伸试验结果(模量、屈服强度、极限拉伸强度、伸长率和断裂表面分析)。总之,LPBF 合金的各向异性拉伸性能的主要来源是晶体结构、各向异性微观结构形态、熔合缺陷不足和熔池宏观结构。在各向异性微观结构中,与相和特征(例如晶界 α、沉淀物等)的优先分布相比,拉长的晶粒似乎是次要的。各向异性模量和屈服强度主要由晶体织构引起。晶体塑性模拟支持了这一点。各向异性伸长主要由各向异性微观结构形态、未熔合缺陷和熔池宏观结构引起。支持这一点的证据来自遵循这些特征的断裂表面。熔池宏观结构是最难通过实验从其他各向异性源列表中分离出来的。一组激光工艺参数和合金的发现并不具有指导意义。在将拉伸各向异性的原因与特定来源联系起来之前,必须对上述来源进行表征。需要制定表征和操纵晶体织构、孔隙率、晶粒和相形态以及熔池宏观结构的策略,以更好地理解和控制 AM 金属中的机械各向异性。
在使用钛合金粉末时,在定向能量沉积(DED)添加剂制造,粉末聚集和烧结时可能会发生在熔体池之外。使用原位同步子射线照相术,我们研究了池周围发生Ti6242粉末的烧结的机制,进行了一项参数研究,以确定激光功率和阶段遍历速度对烧结速度的影响。结果表明,尽管后者也降低了沉积层的厚度,但可以使用高激光功率或增加阶段横向速度来减少有害的烧结。DED期间烧结的机理被确定为激光束中粉末颗粒的飞行加热。在本研究中探索的加工条件下颗粒加热的计算证实,粉末颗粒可以合理地超过700℃,即Ti表面氧化物溶解的阈值,因此如果未掺入熔体池,则粉末容易烧结。沉积表面上烧结粉末层的堆积导致缺乏融合孔。为了减轻烧结的形成及其对DED组件质量的有害影响,至关重要的是,粉末输送点面积小于熔体池,以确保大多数粉末土地在熔体池中。
在本研究中,采用高通量 (HT) 方法来快速评估 83 种增材制造的 316L 不锈钢的表面特性。表面粗糙度 (S a) 的变化与无量纲数 (π) 呈现出良好的相关性,并与内部孔隙缺陷直接相关。未熔合状态与高表面粗糙度 (S a > 5 μm)、低无量纲数 (π < 61) 以及熔池轨道之间存在空洞有关。球化状态与高表面粗糙度 (S a > 5 μm)、中等无量纲数 (61 < π < 146) 和不均匀的熔池轨道宽度相关。锁孔状态表现出低表面粗糙度 (S a < 5 μm)、高无量纲数 (π > 146) 和弯曲的熔池轨道。这种方法加速了工艺参数的发现,并最大限度地减少了 LPBF 工艺的孔隙缺陷。缺陷对加工后拉伸力学性能的影响表明,具有孔隙度的样品的拉伸强度比最佳样品低 10%,延展性低 30%。
图3.1示意图说明了脉冲激光消融事件的关键元素。(a)激光辐射的初始吸收(由长箭头表示),熔化和蒸发开始(阴影区域表示融化的材料,短箭头表示固体 - 液态界面的运动)。(b)融化前端传播到固体,蒸发持续,激光 - 泵相互作用开始变得很重要。(c)通过羽流和血浆形成吸收入射激光辐射。(d)融化前向后退,导致最终重新固定化。
定向能量沉积 (DED) 增材制造 (AM) 在许多应用领域受到越来越多的关注,例如修复、再制造和功能梯度结构制造。然而,在粉末流动的激光 DED 中,激光与物质的相互作用和熔池动力学仍然不清楚,特别是在过程中孔隙如何在熔池内形成和流动。了解孔隙的形成机制对于 DED AM 部件的鉴定、认证和整体性能至关重要。孔隙是一种常见现象,会严重影响 DED 制造部件的质量,因为孔隙可以作为裂纹成核和扩展的场所。在这里,我们通过原位和原位高速高分辨率 X 射线成像揭示了 DED AM 过程中的四种孔隙形成机制。我们的结果证实,原料粉末内的孔隙会在过程中引起孔隙。我们还观察到了激光粉末吹制 DED 工艺所特有的孔隙形成机制,这是粉末输送、小孔动力学、熔池动力学和保护气体的结果。高速 X 射线图像为孔隙形成机制提供了直接证据,并表明与输送粉末和熔池相互作用相关的孔隙在激光粉末吹制 DED AM 中尺寸最大。这些结果将指导 DED AM 中的孔隙度缓解、消除和控制。
定向能量沉积 (DED) 工艺的有限元模型可预测高速钢长方体样品制造过程中的热历史。模拟结果验证依赖于测量数据和预测数据之间的比较,例如基体内部的温度历史和最后一层涂层的熔池深度。这些 DED 模拟集成在优化循环中,可确定两个可变激光功率函数,它们能够产生恒定的熔池大小。这些函数有望在各层上提供均匀的微观结构。计算出的热场和由三个 AISI M4 实验产生的微观结构是相互关联的,这些实验是在恒定激光功率情况下进行的,两个优化函数位于沉积物内不同深度的三个关注点处。观察到熔体过热温度和热循环历史对微观和纳米硬度测量的影响。因此,优化的激光功率函数为样品提供了比恒定激光功率函数更均匀的微观硬度,但是,整个沉积的 M4 钢层的纳米硬度图并未完全证实微观结构的均匀性。
新兴的添加剂制造(AM)技术,直接的金属激光烧结(DML)是三维部分的逐层制造的复杂过程。通过DML,金属粉末散布在粉末床上,层薄,高达20μm。高能激光器(。200 w)聚焦在粉末上,并使用定义的光栅图案扫描表面。激光与粉末相互作用时,一些能量会反映并散布到周围环境中和粉末晶粒之间。剩下的入射能被吸收,从而在熔化温度T m上方迅速加热粉末,形成局部熔体池。随着激光的传递,温度由于辐射,对流和导电的热量损失而降低,环境,周围的粉末以及通过下面的构建板(图1)。最终,温度降低足够降低,以至于熔体池经过液体到固体相变并固化。通过DML的温度病史,特别是液体到固体的相位转移时间和熔体池冷却速率,是最终产物的微结构和强度的最重要因素。1
摘要:轴类零件由于长期在恶劣环境下运行,很多关键零部件遭受腐蚀、磨损等问题,导致零件失效,无法继续服役,对失效零部件进行修复,提高其使用寿命势在必行。设计正交试验方案,基于ANSYS仿真平台,对4140合金结构钢激光熔覆Inconel 718合金粉末过程进行数值模拟,根据热平衡原理推导熔覆层厚度关系方程,建立有限元模型,耦合温度场、应力场和流体场3个模块,并通过不同模块分析,实现对激光熔覆不同过程的监控。最优熔覆参数为激光功率1000 W、扫描速度15 rad/s、光斑半径1.5 mm,热应力最大值为696 Mpa,残余应力最小值为281 Mpa,三因素对热应力最大值的影响程度为:激光功率>光斑半径>扫描速度。熔池在熔化过程中出现熔化“尖角”现象,内部呈现双涡流效应,最大流速为0.02 m/s。由于驱动力不同,凝固过程各个阶段呈现不同的形态。本文对激光熔覆过程进行了多场耦合数值模拟,获得了熔覆层残余应力较低的最优熔覆参数。熔化过程中熔池逐渐长大、扩大,但激光加载时间有限,熔池尺寸和形状最终固定,且熔池内部存在从中心向截面两侧流动的涡流,形成双涡流效应。凝固分为四个阶段,完成熔池液相向固相的转变,形成熔覆层。采用多场耦合数值模拟技术对熔覆层的温度场、应力场和流场进行分析,为后续激光熔覆实验提供熔覆层残余应力、表面质量的理论依据。