基于 Al O -SiO -YO 体系的玻璃成分选自 Al O -SiO -YO 相图(图 1)的玻璃形成区,其标准是 YO 负载量最大以及玻璃具有良好的耐热性和耐化学性。采用高纯度初始化学成分(Al O(纯度 99.9%,New Met)、SiO(纯度 99.5%,Leico)和 YO(纯度 99.9%,Otto Kemi))制备优化成分 40Y O -20Al O -40SiO(wt.%)的玻璃。对每种氧化物的称量精度为 ±0.002 克。在制备过程中采取措施避免任何交叉污染。使用标准熔融淬火技术制备玻璃。将所有成分混合并彻底研磨,并在 110°C 下放置一夜,以去除混合和研磨过程中吸收的任何水分。将配料放入 Pt-Rh 坩埚中,在电加热升降 (RL) 熔炉中以 1650°C 加热。搅拌熔体并在熔化温度下保持足够的时间,以均匀混合并去除所有气泡以获得透明熔体。之后,将熔体从炉中取出,并用最佳温度淬火
线弧添加剂制造是一种近网状处理技术,可允许对大型和定制的金属零件的成本效益。在电弧添加剂制造中处理铝的处理非常具有挑战性,尤其是在孔隙率方面。在目前的工作中,研究了AW4043/ALSI5(wt%)的线弧添加剂制造中的孔隙行为,并开发了后处理方法。已经观察到,随着屏蔽气体流量的增加,铝零件的孔隙率也增加了,由于熔体池通过强制对流迅速固化而增加。更高的对流率似乎限制了气体夹杂物的逃脱。此外,从熔体池逸出的气体夹杂物在每个沉积层的表面上留出空腔。过程摄像机成像用于监测这些空腔以形成有关部分孔隙率的形成。观测值是由计算流体动力学模拟支持的,这些模拟表明,气流与线弧添加剂制造制造的铝制零件的孔隙率相关。由于较低的气体流速导致对流冷却的减少,因此熔体池在更长的时间内保持液体,从而使孔逸出更长的时间,从而降低了孔隙度。基于这些调查,提出了一种监视方法。
先进热成像越来越多地被投入到直接能量沉积 (DED) 增材制造 (AM) 中,以应对熔池的信息可见性和解决工艺不一致问题。然而,当前图像引导监测方法在 DED 工艺中的可行性存在关键挑战。首先,高分辨率热图像由数百帧捕获的数百万像素组成,导致分析中的维数灾难。其次,各种外生噪声、结构不良的数据和严重的聚类不平衡限制了当前方法执行实时监控的能力。本研究的目的是通过设计一种针对高维热图像数据的自动和无监督异常检测来推进 DED 工艺中熔池监测的前沿。具体来说,我们开发了一个变分自动编码器来生成每个输入热图像数据的低维表示。高斯混合模型和 K 均值聚类与生成模型相结合,将潜在空间分成同质区域并检测异常。实验结果表明,所提出的方法对缺陷熔池的检测非常有效,准确率高达 94.52%,误报率低于 2.1%。
摘要:涉及高斯过程 (GP) 的多保真度 (MF) 替代物用于设计激光定向能量沉积 (L-DED) 增材制造 (AM) 中的时间过程图。过程图用于建立熔池特性(例如熔池深度)与工艺参数(例如激光功率和扫描速度)之间的关系。MFGP 替代物涉及高保真度 (HF) 和低保真度 (LF) 模型。选择 Autodesk Netfabb ® 有限元模型 (FEM) 作为 HF 模型,而选择 Eagar-Tsai 开发的分析模型作为 LF 模型。结果表明,MFGP 替代物能够成功地融合不同保真度模型中存在的信息,以设计时间前向过程图(例如,给定一组真实深度未知的工艺参数,熔池深度是多少?)。为了扩展新开发的建立时间逆过程图的公式(例如,为了实现所需的熔池深度,但不知道真实工艺参数,那么作为时间函数的工艺参数的最佳预测是什么?),在计算预算约束下,通过将 MFGP 代理与贝叶斯优化 (BO) 相结合来进行案例研究。结果表明,与单精度 (SF) GP-BO 相比,MFGP-BO 可以显著提高优化解决方案的质量,同时降低计算预算。与仅限于开发稳态正向过程图的现有方法相比,当前的工作成功地展示了在 L-DED 中实现结合不确定性量化 (UQ) 的时间正向和逆过程图。
解决方案:该项目的目标是生产出机械性能提高 20-30% 的铸件。目前正在探索多种解决方案,以使将纳米颗粒掺入铝中具有成本效益。最近的工作重点是使用与碳混合的反应性熔剂来生产纳米碳化钛。这是通过将含钛熔剂与活性炭混合并将材料添加到熔体表面来实现的。熔剂的作用是在加工过程中保护熔体。在这项研究中,形成了大量颗粒,并且颗粒的尺寸与碳前体没有紧密联系,这表明可以使用成本较低的碳。由于其他合金可能会干扰反应,因此将使用此程序生产母合金,然后可以将其添加到标准铸造合金中以提高其强度。
第一项合同包括工艺设计包 (PDP) 和许可(后者取决于客户的最终投资决定),用于由农民所有的财团 Genesis Fertilizers 在加拿大贝尔普莱恩(萨斯喀彻温省)开发的综合尿素和柴油机尾气处理液 (DEF) 生产工厂。该工厂的尿素熔融能力为 2,500 公吨/天 (MTPD),预计将于 2029 年开始运营。此外,由于配备了碳捕获和封存装置,它将成为加拿大首个拟建的低碳氮肥工厂。斯塔米卡邦将应用其专有的 Flash 尿素熔融技术,该技术是 NX STAMI Urea™ 产品组合的一部分,旨在提高运营效率和可靠性,同时最大限度地减少工艺蒸汽消耗。
摘要:固体剂型形式的颗粒(例如机械,固体和分子间和固体剂型的生物利用度)在体内瓦解中均可脱落,然后溶解。本评论专注于分解代理,其类别,行动机制,相关的利弊。此外,更多的重点放在天然超级动物上,它们以最快的速率进行分解,副作用有限。因此,它们经常用于创建数量的制剂,例如快速溶解片剂,脉冲和片剂可分散片剂等。尽管有各种崩解剂,但它们与它们共同加工形式进行了彻底研究,以及新型生产技术,例如熔体挤出,结晶,喷雾干燥,溶剂蒸发,颗粒/团聚。关键字:分解超瞬间分散剂,熔体挤出,结晶,喷雾干燥,溶剂蒸发,颗粒/团聚 div div>
染色体隔离需要在动型蛋白复合物和有丝分裂纺锤体之间进行协调,这对于两个子细胞之间的遗传分裂至关重要。动力学是一种蛋白质复合物,位于姐妹染色单体的丝粒上。在有丝分裂过程中,观察到的动物学实际上将姐妹染色质朝着用有丝分裂纺锤体的指南伸向细胞的相反两极。有人提出,stu1是一种小动物络合物中的小蛋白,有助于延迟酿酒酵母的萌芽酵母中的后期,直到每个染色体都附着在有丝分裂的纺锤体上。也有人建议Stu1与纺锤体相互作用,并在拉长时同步移动。已经提出,磷酸化可以调节Stu1的功能,并且熔体是其他动力学蛋白中已知的磷酸化位点,因此,在称为sTu1上的称为熔融基序的磷酸化位点上除去苏氨酸氨基酸在Stu1上的磷酸化位点可能会影响姐妹染色体的能力,这可能会导致姐姐的正确性,这可能会使YEAST YEAST降低。熔体是真菌中保存良好的序列,是其他动力学蛋白中的已知磷酸化位点,是STU1的同源物。利用CRISPR-CAS9酶,我们将在发芽的酵母菌Stu1基因中引入磷酸无效突变,以用熔体序列替代苏氨酸719密码子。到目前为止,我们已经成功克隆了含有引导RNA和Cas9酶基因的质粒。我们假设该突变将在Stu1中产生故障,这可能会阻碍其协调纺锤体和动孔附着的能力,并在有丝分裂过程中完全防止染色体分离。下一步将是用质粒和我们的模板DNA转化酵母,该模板DNA代码在Stu1中的719密码子上编码Valine,这种组合将完全激活酵母中的CRISPR CAS CAS 9基因组编辑系统。