在过去的二十年中,MEMS陀螺仪广泛用于消费电子产品,汽车安全性,机器人技术和稳定,这是由于其尺寸较小和功耗低[1,2]。随着性能的提高,它们也具有巨大的潜力,可以启用更高级的应用程序,例如空间应用。出于这个原因,MEMS陀螺仪有望在大型卫星中检测到故障检测,或者在微卫星,电信卫星和行星流浪者中进行态度传播和速率确定[3-5]。尽管如此,尽管其性能提高,但MEMS陀螺仪仍需要主要的技术适应性适合空间应用,尤其是相对于航空航天环境的高阻力特征。许多研究工作已专门用于MEMS可靠性的领域。通常,大多数特定空间的可靠性问题是热循环和热冲击,辐射,振动和机械冲击,在发射和阶段 /隔热罩分离时[6-9]。微卫星的寿命主要是一年。一方面,陀螺仪必须具有最佳的成本,尺寸,重量和功率(CSWAP)。另一方面,陀螺仪在卫星使用寿命期间应稳定起作用。由于其成本优势,大气包装的MEMS陀螺仪是最好的候选者之一。然而,空间环境的高真空是带有大气包装的MEMS陀螺仪无法忽略的因素。陀螺仪包装中的气压将在非常高的真空状态下的一段时间内下降。MEMS陀螺仪的偏置漂移与工作压力有关[10]。MEMS陀螺仪的另一个偏见漂移来源是它们对温度变化的固有敏感性[11]。因此,工程师应充分注意陀螺仪对热效环境的敏感性。
本文提出了两种沉积方法,用于生成具有PECVD反应器中“零”残留应力的SIN X层:高频模式下的混合频率和高功率(13.56 MHz)。传统上,混合频率模式通常用于产生低应力SIN X层,替代使用HF和LF模式。但是,由于LF模式的沉积速率较低,因此混合频率的组合沉积速率非常小,以产生同质的SIN X层。在第二种方法中,使用了高达600 W的高功率,也可能产生较低的残余应力(0-20 MPa),其沉积速率较高(250至350 nm/min)。较高的功率不仅会导致更高的气体解离速率,从而导致较高的沉积速率,而且在SIN X膜中带来了较高的n键,以及来自SIN X膜的较高体积膨胀的较高压缩应力,从而补偿了拉伸应力并产生低残余应力。此外,本文还研究了其他重要参数的影响,这些参数对残余应力和沉积速率有很大影响,例如反应剂气体流速和压力。通过使用最终优化的配方,基于低应激SIN X层成功制造了KOH和氮化硅悬臂的各向异性湿蚀刻层的掩蔽层。此外,还制造并测试了具有400nm孔的纳米孔膜。通过在纳米多孔膜顶部培养小鼠D1间充质干细胞,结果表明小鼠D1间充质干细胞能够生长良好。这表明纳米方膜可用作与活细胞接口的平台,成为生物分子分离的生物胶囊
AH-1000 AHRS 的设计旨在提供无与伦比的可靠性和性能,与类似系统相比,尺寸和重量显著减小。这使得 AH-1000 能够为 ARINC-705 AHRS 提供最低的总拥有成本体验。
表 1.设备摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 表 2.引脚描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 表 3.过滤值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 表 4.机械特性 @ Vdd = 3.0 V, T = 25 °C 除非另有说明。.........8 表 5。电气特性 @ Vdd =3.0 V, T=25 °C 除非另有说明。.............9 表 6.温度。传感器特性 @ Vdd =3.0 V, T=25 °C 除非另有说明 ........9 表 7.SPI 从属时序值。..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.10 表 8.I2C 从属时序值(TBC) ....................。。。。。。。。。。。。。。。。。。。。。。。。.11 表 9.绝对最大额定值 ...................。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 表10.串行接口引脚说明 ..........< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 表 11.I2C 术语。...< div> 。。。。。。。。。。。。。。。 < /div>.....。。。。。。。。。。。。。。。。。。。。。。。。...... div>......18 表 12.SAD+读写模式。...< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.19 表 13.主机向从机写入一个字节时的传输 ...............................19 表 14.主机向从机写入多个字节时的传输 ..........................20 表 15.当主机从从机接收(读取)一个字节数据时进行传输 ..............20 表 16.主机从从机接收(读取)多个字节数据时的传输 ........20 表 17.文档修订历史 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26
摘要 —本文基于 MEMS 技术设计并制作了带穿孔电极的驻极体振动能量收集器。装置中的固定电极上分布有通孔,以优化能量收集过程。在有限元法 (FEM) 模拟和实验中分析并讨论了孔对装置输出功率的影响。可以看出,通孔可以有效降低大气中可移动质量块上的挤压膜空气阻尼力。因此,可以减少由于空气阻尼造成的能量损失,并增加装置的输出功率。还详细研究了孔直径和数量对装置输出功率的影响。通过优化孔的配置,孔直径为 400 µ m、深度为 100 µ m 的穿孔装置在 1.84 m/s 2 的低加速度下表现出最高的功率输出,这证明了未来在自供电电子产品中的良好应用。 [2020-0380]
3.18.1 Introduction to MEMS Atomic Clocks 572 3.18.1.1 Introduction 572 3.18.1.2 Vapor Cell Atomic Clocks 573 3.18.1.3 Coherent Population Trapping 575 3.18.1.4 CPT in Small Vapor Cells 577 3.18.2 Design and Fabrication 578 3.18.2.1 Introduction 578 3.18.2.2 Physics Package 579 3.18.2.2.1简介579 3.18.2.2.2垂直腔表面发射激光580 3.18.2.2.3蒸汽单元581 3.18.2.2.4光学584 3.18.2.2.2.5加热585 3.18.2.2.2.2.2.2.2.2.2.2.2.2.2.2 CSAC 588 3.18.2.3.3其他MEMS共振器588 3.18.2.4控制电子设备590 3.18.2.5包装591 3.18.3性能592 3.18.3.1简介592 3.18.3.2频率稳定592 3.18.3.2.2-2.2.2.2.2.2.3.3.1.2.5频率592 3.18.1.长期频率稳定性595 3.18.3.3功耗596 3.18.3.4尺寸597 3.18.4高级技术597 3.18.4.1简介597 3.18.4.2共振对比597 3.18.4.4.4.4 Introduction 600 3.18.5.2 End-State CSAC 600 3.18.5.3 Nanomechanically Regulated CSAC 601 3.18.5.4 CPT Maser 601 3.18.5.5 Raman Oscillator 601 3.18.5.6 Ramsey-Type CPT Interrogation 602 3.18.5.7 N-Resonances 602 3.18.5.8 Others 603 3.18.6 Other MEMS Atomic Sensors 603参考文献605
摘要:微机电系统 (MEMS) 技术在导航系统中的应用正在迅速增加,但目前人们对此类设备的可靠性缺乏了解,这严重限制了它们在航空航天飞行器和其他中高要求领域的使用。本文介绍了一种基于 MEMS 的惯性传感器和惯性测量单元 (IMU) 在振动环境中应用的可靠性测试程序。从信号精度、系统误差和偶然误差方面评估传感性能;通过加速动态激励模拟实际工作条件。分析了商用 MEMS IMU 以验证所提出的程序。通过提供有关系统可靠性水平与各个组件之间关系的重要信息,已经确定了系统的主要弱点。
摘要:基于二维(2D)材料的微型和纳米机电系统(MEMS和NEMS)设备与硅基碱对应物相比揭示了新型功能和更高的灵敏度。2D材料的独特性能增强了对2D材料基于纳米机电设备和传感的需求。在过去的几十年中,使用与MEMS和NEMS集成的悬浮2D膜出现了质量和气体传感器,加速度计,压力传感器和麦克风的高性能敏感性。通过MEMS/NEMS传感器提供了积极感测的微小变化,例如在动量,温度和应变的小小变化的被动模式下传感。在这篇综述中,我们讨论了NEM和MEMS设备中使用的2D材料的材料准备方法,电子,光学和机械性能,除了设备操作原理外,制造路线。
摘要。氧化硅基材料(例如石英和二氧化硅)被广泛用于微机电系统(MEMS)。增强其深等离子体蚀刻能力的一种方法是通过使用硬面膜来提高选择性。尽管以前研究了这种方法,但有关在200 mM底物上使用硬面膜来蚀刻基于硅氧化物材料的信息很少。我们提出了使用Al和Aln掩模的无定形氧化硅蚀刻过程开发的结果,并展示了用于蚀刻二氧化硅和石英的结果。在具有两个血浆源的工业反应性离子蚀刻室(RIE)室中比较了三个气体化学(C 4 F 8 /O 2,CF 4和SF 6)及其混合物。已经确定,纯SF 6是最好的蚀刻剂,而ALN比Al更好地提供了较高的选择性和靠近垂直的侧壁角度。建立了无微量蚀刻的一系列蚀刻参数,并使用蚀刻速率为0.32-0.36m/min的工艺在21M-厚的氧化物中创建了高达4:1纵横比的蚀刻结构,并且对(38-49)的Aln Mask的选择性为0.32-0.36m/min。