要比较800-1020 nm范围的飞秒激光脉冲的SHG的性能,使用了各种制造和加工程序[4]来合成SI/SIO 2和SIO 2中孔纳米颗粒。红外飞秒激光扫描系统用于映射[5]。发现热或激光诱导的Si退火导致Si相从无定形转变为纳米晶体,从而改善了纳米颗粒的非线性特性,并使它们表现出宽带光发光。这些结果证实了中孔SI/SIO 2纳米颗粒对第二次谐波生成的效率,并扩展了其在纳米级光学中的潜在应用[6]。
过去二十年来目睹了对Van-der-Waals(VDW)材料的研究爆炸,这是一类广泛的固体,在该固体中,平面晶体板由VDW部队粘合在一起。通常,这些材料只能将其稀释为几个原子层,甚至可以将其变成单个原子纸,从而意识到其传统散装形式的二维(2D)变体。由于在2000年代初期的单层(1L)的第一次驱动器以来,已经将各种VDW材料隔离并以2D极限进行了隔离和研究,包括金属,宽间隙绝缘子,半导体,半导体,半金属,超级导管,磁性材料,磁性材料,以及更多。[1]中,在这些半金属中,例如石墨烯和2D半导管,通常由VI组VI过渡金属二甲硅烷基(TMDC)代表,在基本凝聚的物理学以及在电子,电子,光电电子技术中以及在基本凝聚的物理学方面创造了令人兴奋的新机会。[2-4]由于光学相互作用和频段结构发生了巨大变化,在从几层到1L极限的过渡中可能发生,因此在2D Light-Matter相互作用和超级超平均光电设备中证明了2D半导体和半米的独特机会。这值得探索其光诱导的物理学,从而导致新型量子现象。2D材料的关键特性之一是增强的电子 - 电子库仑相互作用,其介电筛选和低维度引起。这些相互作用不仅强烈修改平衡频带结构,而且更改了(照片)激发的带构结构。[5],例如,强烈结合的激子[6](由绑定的电子和孔组成),即使在室温下,也要赋予2D半导体的光学响应。这些摘录显示出各种各样的物种,具有不同的自旋,[7] Monma,[8]和电荷[9]影响其光 - 肌电相互作用的频谱,动力学和应用。2D材料的另一个属性是它们能够将其堆放到其他2D材料和基板上,几乎没有约束。[10]这些结构中的层间相互作用促进了一种独特的手段,用于设计异质结构属性和功能,而不是组成材料的材料。[11,12]这些属性包括动量依赖性层
我们的 ICT 策略中很大一部分是针对维护 ICT 资产的性能,以确保它们能够继续帮助我们提供客户期望的服务。我们根据生命周期和容量计划进行运营风险评估,以确定 ICT 系统的风险状况何时可能发生变化,以便我们能够优化补救解决方案的范围和时间。我们还定期进行审查,以评估软件和硬件的性能;这些评估考虑了当前性能水平与预期服务水平的比较、事件或中断的频率、使用服务时的最终用户或客户响应时间以及许多其他关键性能标准。
摘要:在安全,政治和其他社会科学中应用定性,定量和混合方法,以进行研究,实现或验证科学知识。本文的目的是解释定性方法的优势 - 访谈,焦点小组,观察或定量方法 - 调查,规模等。此外,我们将通过使用一些混合方法来解释如何在安全和政治科学方面进行研究。混合方法结合了质量和定量方法,以扩大对某个问题的理解。例如,混合方法可以结合访谈和调查。此外,混合方法设计可能结合了研究设计的某些要素,例如研究问题,数据收集或数据分析。在那里,混合的研究设计(称为第三波)主要用于安全,政治和其他社会现象的研究。关键词:科学研究的方法论,定性方法,定量方法,混合方法,安全和政治现象。
8:40主题演讲:从毛孔到脆弱的阶段:高级制造业的关键途径N. Nudelis,Z。Mohamed,C。Obergfell,S。Rotzsche,P。Mayr
摘要目标/假设有两个先决条件,即精密医学方法对治疗个体有益。首先,必须存在治疗异质性;其次,在治疗异质性的情况下,我们需要检测临床预测因子,以确定从一种治疗中受益的人比从一种治疗中受益更多。有一种已建立的元回归方法来评估这两种先决条件,该方法依赖于在安慰剂对照的随机试验中治疗后临床结果的变异性。我们的目的是将这种方法应用于2型糖尿病的治疗。方法我们使用来自174个安慰剂对照的随机三体和178个安慰剂和272 Verum的信息进行了元回归分析(即主动治疗)包括86,940名参与者有关血糖控制的变异性,如HbA 1c后评估的治疗及其潜在预测因子。结果Verum和安慰剂臂之间的对数(SD)值的调整后差为0.037(95%CI:0.004,0.069)。也就是说,我们发现在Verum臂中处理后HBA 1C值的变异性略有增加。此外,观察到了一种潜在的相关预测指标,观察到了药物类别,而GLP-1受体激动剂在原木值(SD)值中产生了最大的差异。结论/解释Precision Medicine方法在2型糖尿病的治疗中的潜力充其量至少是适度的,至少关于血糖控制的改善。我们发现,在血糖控制较差的个体中使用GLP-1受体激动剂治疗后的变异性更大,应通过其他临床结果和不同的研究设计来复制和/或验证。资助此处报告的研究没有获得公共,商业或非营利性部门的任何资助机构的具体赠款。数据可用性在https://zenodo。Org/Record/79566 35上可用,可从本文获得两个数据集(一个用于日志[SD]的[SD]和一个用于基线校正的日志[SD])。
筛查罕见的遗传诊断,以保持反义寡核苷酸治疗的发展:一项回顾性队列研究David Cheerie 1,2 Marlen C. Lauffer 3 Logan Newton 1,2 Kimberly Amburgey 1,2,2,2,2,2,4 Danique Beijer 5,6 Bushra Haque 1 Brian Haque 1 Brian T. PAN 1,2 Miriam Reuter 9,10 Michael J. Szego 2,11,12 Anna Szuto 1,2,10 n = 1合作Annemieke aartsma-Rus 3,13 Michelle M. Axford 14,15 Ashish R. Deshwar 1,2,9,10,10,10,10,10 James J. Dowling 1,2,2,2,4,4,4,4,4,2 r.Marshall 14,1,25 Zhanda Zhanda Zhanda Zhanda Zhanda 14.25 Zhanda Zhanda Zhanda Zhanda Zhanda 14,1,25 ZHAL ZHARE 14,1,25 Matthis Synofzik 5,6 Timothy W. Yu 8,18 Gregory Costain 1,2,9,10,19 * 1遗传学和基因组生物学方面的计划中心,莱顿,荷兰荷兰4神经病学科医院,生病儿童医院,多伦多,安大略省,加拿大安大略省5个神经退行性疾病的转化基因组学科,赫尔蒂临床脑研究和神经病学中心和神经病学中心
8:40 主题演讲:从孔隙到脆性阶段:先进制造中失效的关键途径 N. Nudelis、Z. Mohamed、C. Obergfell、S. Rotzsche、P. Mayr