量子擦除实验通过让延迟事件影响先前记录的、可能广泛分布的经典信息的状态,突破了量子世界与经典世界之间的界限。对于这种令人不安的仅向前因果关系违反的唯一重要限制是,向前依赖信息的分布不能越过过去事件的光锥边界,这一特征确保不会发生因果关系违反——不会重写任何其他人记录的历史。对这一难题的擦除解释需要重写过去记录和分布的信息,这本身就是对因果关系的违反。量子宿命论解释消除了因果重写问题。然而,量子宿命论需要从向前依赖事件的光锥之外详细协调输入,从而严重违反了防止此类事件因果关系违反的同一限制。另一种方法是调用量子擦除的薛定谔猫变体,其中光锥内任意复杂的经典事件都变得依赖于未来事件的量子。与所有薛定谔猫对量子力学的解释一样,这种量子擦除的变体通过丢弃局部经典历史(例如猫身体的信息丰富状态)而违反了因果关系。擦除实验最直接的解释是遵循方程本身的引导,这些方程在纸面上的变换就好像它们的分量与普通的空间和时间限制无关,直到光速对它们施加的限制。将每个量子系统的光锥解释为非时间、非空间单位,其中经典时间和空间没有意义,这会导致多尺度、物质相关的时空定义,其中每个光锥都是一个单一的量子实体。在这样的宇宙中,时间和空间都不是预先存在的、与质量无关的连续体,而是大量不断相互作用和相互限制的量子实体光锥的共识。
“当谈到纯 CP 和不纯 CP 之间的区别时,似乎很明显,这个论点 [原始主义的现象学对比论点] 不能支持比不纯 CP 更多的论点。毕竟,所有例子都涉及体验视觉外观、声音流等的方式。这个论点针对的是那些在意识生活中除了感官现象学什么都找不到的人,它促使她注意到这些感官外观之间的区别,而这些区别只能通过诉诸认知渗透来解释。公平地说。尽管如此,这并没有给我们带来任何像纯 CP 的东西。就这个论点所表明的,认知内容让自己出现在有意识的主体面前的唯一方式仍然是影响某些感官流形出现的方式。这是不纯的 CP”(Levine 2011:115-116)。
我想首先感谢我的博士主管Hae-Young Kee教授。在过去的几年中,她一直指导和指导我,并与我一起度过了最好和最糟糕的时代。我只能希望我从互动中成为一个更好的人,我将永远随身携带她教给我的教训。我要感谢我的监督委员会,杨·博克(Yong-Baek Kim)教授和斯蒂芬·R·朱利安(Stephen R. Julian)教授,以支持整个计划的委员会成员和老师。说我遇到了很多人是轻描淡写的。Whether it be fleshing out physics ideas or casual quality of life interactions I would like to thank in no spe- cific order Andrei Catuneanu, Jacob S. Gordon, Austin Lindquist, Nazim Boudjada, Emily Zinnia Zhang, Vijin Venu, Peihang Xu, CJ Woodford, Daniel Baker, Leonardo Jose Uribe Castano, Sopheak Sorn,Wonjune Choi,Li Ern Chern,Geremia Mas-Sarelli,Adarsh Patri,Eli Bourassa,Eli Bourassa,Ilan Tzitrin,Heung-Sik Kim,Yige Chen,Vijay Shankar Venkataraman,Robert Scha函数Diana Swiecicki,Ilia Khait,Pranai Vasudev,Sergey Eyderman。非常感谢您向Heung-Sik Kim提供无尽的帮助,希望我不会像我怀疑那样打扰您。我相信,如果不是我的朋友,同事和同志Aris Spourdalakis和Dionysia Pitsili-Chatzi,我不会活着,我永远对此表示感谢。在我的努力中,他们无休止的支持,我非常感谢我的母亲Panagiota Karouni和姐姐Stavroula Stephi Stavropoulos。感谢您多年来的支持和支持。我也很感激我的朋友在海洋中,瓦西利斯·罗卡吉(Vasilis Rokaj),彼得罗斯·安德烈亚斯(Petros Andreas Pantazopoulos),乔治·巴塔吉安尼斯(George Batagiannis),perseas christodoulidis,gilho ahn,savvas ros-tadis,savvas rostadis,kalliopi souvatzi,以保持我的精神振奋。最后,我将不感谢物理学系的所有受雇于的工作,他的持久工作使我和其他所有研究生都成为可能。特别感谢伊莎贝拉(Isabella)在该部门的晚上工作之夜是友好的面孔。
我们已为六倍体普通小麦品种“Fielder”建立了高质量的染色体水平基因组组装,Fielder 是美国软质白色糕点型小麦,于 1974 年推出,以易受农杆菌介导的转化和基因组编辑而闻名。使用 HiFi 方法的 PacBio 环状共识测序获得了准确的长读序列。使用 hifiasm 组装器组装的 16 个 SMRT 细胞的序列读数产生了 N50 大于 20 Mb 的组装体。我们使用 Omni-C 染色体构象捕获技术将重叠群排序为染色体水平组装体,得到 21 个伪分子,累计大小为 14.7,未锚定重叠群为 0.3 Gb。对含有已编辑的种子休眠基因 TaQsd1 的转基因小麦植物的已发表短读段进行定位,确定了转基因插入小麦染色体的四个位置。在伪分子中检测向导 RNA 序列为脱靶突变诱导提供了候选。这些结果证明了使用 PacBio HiFi 读段进行染色体规模组装的效率及其在小麦基因组编辑研究中的应用。
其中α是定量时空的每个模型的常数特异性[14 - 17]。此外,全息原理[18-20]和随之而来的协变熵结合[21],这意味着这些距离波动在给定的时空体积中相关。此外,Verlinde和Zurek [22,23]和'T Hooft [24,25]的工作表明,这些相关性可能会延伸到横向上的宏观距离(或等效地,沿着因果钻石的边界[26])。这些理论方法评估了量子波动及其在Hori-Zons上的相关性,并通过将因果钻石的边界确定为视野(特别是Rindler Hori-Zons),可以描述量子时空波动的横向相关性。,Verlinde和Zurek假设热力学特性所规定的能量波动会导致公制在台上通过牛顿电势而与横向相关性的视频波动[22]。'thooft提出,如果地平线的量子波动,黑洞可以服从单位性(例如霍金辐射)是隔离纠缠的[27]。这些理论为波动的垂直两点相关函数提供了具体而几乎相同的预测,作为球形谐波的扩展[22,24,28]。以这种方式得出的相关性分解为球形谐波y m y y m在低L模式中的大部分功能,这激发了以下预测,如上所述,横向相关性在宏观角度分离上延伸到宏观的角度分离。此外,已经提出,CMB中温度波动的角功率谱是这种基本分解在通货膨胀范围上量子波动的球形谐波中的基本分解的表现[29]。重要的是,宏观横向相关性意味着波动在激光束或望远镜孔径的典型直径上是连贯的。如果是这种情况,则通过评估远处对象图像的模糊或退化[16,30]的模糊或降解来设置在量子时空波动上[16,30]。鉴于距离量表的量子时空波动与宏观距离上的相关性和相关性,激光干涉仪对它们具有独特的敏感。因此,对这些波动的最严格约束是由现有的干涉量实验设置的。Ligo,处女座和Kagra协作使用的引力波(GW)干涉仪的设计[31]降低了其对量子时空幻影的潜在敏感性。这是因为它们在手臂中使用Fabry – p´errot腔(或折叠臂,如Geo 600中),这意味着单个光子多次横穿相同的距离。此外,这些仪器的输出的频率低于光线交叉频率。这会导致从单个光线中积累的波动中随机检测到的信号与随后的交叉点的信号平均,从而消除了效果[17]。一个旨在检测量子时空波动的干涉测量实验是Fermilab螺旋表,它由两个相同的共同阶层和重生40 m
在过去的几年中,科学研究开放了将数字游戏用于人类研究的想法。神经科学,医学和情感计算等领域目前正在使用游戏来研究基于人类的现象。即使该领域中存在大量工作,但设计这种游戏的主题很少。实际上,该领域中的一个常见问题是,游戏本身通常是事后的想法,在这种情况下,某些游戏限制永远不会被真正承认,并且倾向于大部分被忽略。因此,本文介绍了一些游戏设计准则,以针对专门使用游戏的作品中最常见的问题,专门使用人类生理数据收集的目的。此外,对最流行的生理记录方法的简要描述:皮肤电导(SC),心率变异性(HRV),肌电图(EMG),脑电图(EEG)(EEG)和功能磁共振成像(FMRI);作为使用此类设备的游戏“限制”提供的是在游戏设计过程中考虑的重要因素。因此,本文的目的是提供对文献中发现的特定游戏设计限制的认识,并从游戏设计的角度进行分析。
彼得·卡拉瑟斯 (Peter Carruthers) 认为,全局工作空间理论意味着动物意识不存在任何事实。这一论点很容易扩展到其他意识认知理论,给意识研究带来了一个普遍问题。但这一论点证明得太多了,因为它还意味着人类意识不存在任何事实。一个关键假设是,科学的意识理论必须解释这一解释空白。我批评这一假设,并指出了一种捍卫科学意识理论的替代策略,这种策略能更好地反映正在进行的科学实践。我认为,从现象概念到功能概念存在可内省的推理联系,科学家可以使用这些联系根据动物和人类共有的能力来个体化全局工作空间。
过去几年,科学研究开始考虑使用数字游戏进行以人为本的研究。神经科学、医学和情感计算等领域目前正在使用游戏来研究以人为本的现象。尽管该领域有大量的研究,但很少有人涉及设计此类游戏。事实上,该领域的一个常见问题是游戏本身往往是事后才想到的,某些游戏限制从未真正被承认,而且往往被忽视。因此,本文旨在为文献中最常见的问题提供一些游戏设计指南,这些问题来自专门使用游戏进行人类生理数据收集的工作。此外,本文还简要介绍了最流行的生理记录方法:皮肤电导 (SC)、心率变异性 (HRV)、肌电图 (EMG)、脑电图 (EEG) 和功能性磁共振成像 (fMRI);因为使用此类设备的游戏“限制”是游戏设计过程中需要考虑的重要因素。因此,本文的目的是提高对文献中发现的特定游戏设计局限性的认识,并从游戏设计的角度对其进行分析。
本论文受版权和/或相关权利保护。它由西弗吉尼亚大学研究资料库在获得权利持有人许可的情况下提供给您。您可以自由地以适用于您的使用的版权和相关权利立法允许的任何方式使用本论文。对于其他用途,您必须直接获得权利持有人的许可,除非记录和/或作品本身中的 Creative Commons 许可证表明了其他权利。西弗吉尼亚大学研究资料库的授权管理员已接受本论文并将其纳入西弗吉尼亚大学研究生论文、学位论文和问题报告集合。有关更多信息,请联系 researchrepository@mail.wvu.edu。
构建社区构建社区对于任何一起工作的团体都很重要,特别是如果参与者以前没有一起工作过。这个概念与营造安全、尊重、高效的课堂氛围相同。将社区建设纳入每节课可以建立信任,向参与者表明他们作为个体是有价值的,并让他们参与学习过程。它还有助于创建一个专业的学习网络,让参与者在工作中得到支持。社区建设可以简单到让参与者介绍自己和他们在学校/学区中的角色、制定或完善团体规范、允许提问和/或分享对模块课程中包含的个人反思或新学习的答案。分配给社区建设的时间将让参与者有机会发言并作为积极的贡献者和学习者参与课程。注意:此资源已从 ACESSE 资源 E 修改而来,通过 OER(开放教育资源)共享平台提供,并通过知识共享许可证(CC BY-SA)提供。推进连贯和公平的科学教育体系 (ACESSE,或“access”) 项目汇集了教育研究和实践领域的合作伙伴,以解决教育领域的一个紧迫问题:如何使州科学教育体系更加公平和连贯。该项目基于科罗拉多大学博尔德分校、华盛顿大学和州科学监督委员会 (CSSS) 之间的深度合作。该项目由美国国家科学基金会 (NSF) 通过奖项 DRL-156 1300 资助。