随着成年,患有先天性免疫缺陷(又称原发性免疫缺陷)等慢性疾病的青少年必须为从儿科护理转向成人护理的艰难时期做好准备。在慢性病从儿科到成人护理的过渡中,护理的连续性、关系的连续性、信息缺乏和病情的自我管理等挑战现在已成为众所周知的问题(1、2,Padley N、Moubayed D、Lanteigne A、Ouimet F、Clermont MJ、Fournier A 等人。从儿科到成人健康服务的过渡:人类繁荣的愿望和实践。国际质量研究健康福祉杂志(审查中 - 2023 年))。此外,由于缺乏随访和治疗依从性差,青少年在过渡期内容易出现更高的发病率和死亡率(3)。除了医疗转变之外,青少年及其家人还要经历生活中的其他转变,即从青少年到成年的转变,这代表着一系列身体、心理、社会和环境变化。尽管医疗保健转变如今是一个新兴的研究领域,但很少有人关注 IEI。这令人担忧,因为每种慢性病都有不同的治疗要求和临床表现,而这些可能无法在同质的转变过程中得到适应。例如,IEI 具有临床意义,如需要高度专业化的跨诊所护理以及社会心理和认知并发症,这可能会对平稳转变造成额外的障碍。据我们所知,专门研究 IEI 医疗保健转变的研究很少(3-7),其中只有一项研究包括了青少年或其家人的观点(7)。在研究中纳入患者及其家人的观点对于影响制定能够更具体地满足他们需求的计划或程序至关重要。忽视他们的观点可能会导致过渡计划过于以治疗依从性和医疗依从性为中心,而这些优先事项可能与青少年及其家人的需求和价值观不一致,从而导致次优结果 ( 8 )。我们进行了一项定性研究,以更好地了解专门为 IEI 提供门诊护理的免疫学诊所的青少年和父母的观点。我们力求更广泛地了解他们的经历、需求以及他们在从儿科护理过渡到成人护理方面面临的挑战。
我们已审查了您根据第 510(k) 条提交的上述器械上市前意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据法案的一般控制规定销售该器械。虽然这封信将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不评估与合同责任担保相关的信息。但是,我们提醒您,设备标签必须真实,不得误导。
毫米级、大面积均匀半导体器件分层用于物理故障分析和质量控制 Pawel Nowakowski*、Mary Ray、Paul Fischione EA Fischione Instruments,Export,宾夕法尼亚州,美国* 通讯作者:p_nowakowski@fischione.com 不断发展的微电子设备设计越来越复杂、越来越紧凑和越来越小。这些设计可能包括越来越多的层、三维 (3D) 垂直堆叠、气隙和不同的材料成分。大批量半导体器件制造需要强大的质量控制和故障分析过程。过去几十年来,已经开发出了许多故障分析技术,包括非破坏性和破坏性技术 [1-3]。一种非常流行的技术是器件分层,即从上到下控制地去除器件层。通过这种技术获得的信息可以支持质量控制、故障分析工作、成品和工艺改进数据以及逆向工程。
[2] S. M. Thompson,L。Bian,N。Shamsaei和A. Yadollahi,“添加剂制造的直接激光沉积概述;第一部分:运输现象,建模和诊断,” Addive Manufacturing,第1卷。8,pp。36-62,2015年10月。[3] V. T. Le,H。Paris和G. Mandil,“使用增材和减法制造技术的直接零件再利用策略的制定”,《增材制造》,第1卷。22,pp。687-699,2018年8月。[4] V. T. Le,H。Paris和G. Mandil,“在再制造环境中合并添加剂和减法制造技术的过程计划”,《制造系统杂志》,第1卷。44,否。1,pp。243-254,2017年7月。[5] A. Ramalho,T。G. Santos,B。Bevans,Z。Smoqi,P。Rao和J. P. Oliveira,“污染对316L不锈钢线和ARC添加性生产过程中声学发射的影响”,Addived Manufacturing,第1卷。51,第1条。102585,2022年3月。[6] S. Li,J。Y. Li,Z。W. Jiang,Y。Cheng,Y。Z. Li,S。Tang等人,“控制Inconel 625的定向能量沉积期间的柱状到等式的过渡”,Addy Manufacturing,第1卷。57,第1条。102958,2022年9月。[7] T. A. Rodrigues,N。Bairrão,F。W。C. Farias,A。Shamsolhodaei,J。Shen,J。Shen,N。Zhou等人,“由Twin-Wire和Arc添加剂制造(T-WAAM)生产的钢 - Copper功能渐变的材料(T-WAAM)”,材料&Designs,第1卷。213,第1条。110270,2022年1月。66,否。8,pp。1565-1580,2022年8月。32,否。[8] V. T. Le,D。S. Mai,M。C. Bui,K。Wasmer,V。A. Nguyen,D。M. Dinh等,“过程参数和热周期的影响,对308L不锈钢墙的质量,该材料由添加剂生产产生的308L不锈钢墙,使用弧形焊接来源,使用弧形焊接源,焊接,焊接,焊接,”。[9] D. Jafari,T。H。J. Vaneker和I. Gibson,“电线和电弧添加剂制造:控制制造零件的质量和准确性的机遇和挑战”,《材料与设计》,第1卷。202,第1条。109471,2021年4月。[10] S. W. Williams,F。Martina,A。C. Addison,J。Ding,G。Pardal和P. Colegrove,“ Wire + Arc添加剂制造”,《材料科学与技术》,第1卷。7,pp。641-647,2016。[11] W. E. Frazier,“金属添加剂制造:评论”,《材料工程与性能杂志》,第1卷。23,否。6,pp。1917-1928,2014年6月。[12] J. Xiong,Y。Li,R。Li和Z. Yin,“过程参数对基于GMAW的添加剂制造中多层单频薄壁零件的表面粗糙度的影响”,《材料加工技术杂志》,第1卷。252,pp。128-136,2018年2月。[13] V. T. Le,“基于气体弧焊接的金属零件添加剂制造的初步研究”,VNUHCM科学技术杂志,第1卷。23,否。1,pp。422-429,2020年2月。58,否。4,pp。461-472,2020年7月。[15] W. Jin,C。Zhang,S。Jin,Y。Tian,D。Wellmann和W. Liu,“不锈钢的电弧添加剂制造:审查”,《应用科学》,第1卷。[14] V. T. Le,Q。H。Hoang,V。C. Tran,D。S. Mai,D。M. Dinh和T. K. Doan,“焊接电流对由薄壁低碳构建的形状和微观结构形成的影响,由电线添加剂制造建造的薄壁低碳零件”,《越南科学和技术杂志》,第1卷。10,否。5,第1条。1563,2020年3月。[16] T. A. Rodrigues,V。Duarte,J。A. Avila,T。G。Santos,R。M。Miranda和J. P. Oliveira,“ HSLA钢的电线和弧添加剂制造:热循环对微结构和机械性能的影响”,《增材制造》,第1卷。27,pp。440-450,2019年5月。[17] J. G. Lopes,C。M。Machado,V。R。Duarte,T。A。Rodrigues,T。G。Santos和J. P. Oliveira,“铣削参数对电线和弧添加剂生产产生的HSLA钢零件的影响(WAAM)”,《制造工艺杂志》,第1卷。59,pp。739-749,2020年11月。[18] A. V. Nemani,M。Ghaffari和A. Nasiri,“通过传统滚动与电线弧添加剂制造制造的船建造钢板的微观结构特性和机械性能的比较,”添加剂制造业,第1卷。32,第1条。101086,2020年3月。[19] P. Dirisu,S。Ganguly,A。Mehmanparast,F。Martina和S. Williams,“对线 +电线 + ARC添加剂生产的高强度高强度低合金结构钢组件的裂缝韧性分析”,材料科学与工程:A,第1卷,第1卷。765,第1条。138285,2019年9月。787,第1条。139514,2020年6月。[20] L. Sun,F。Jiang,R。Huang,D。Yuan,C。Guo和J. Wang,“各向异性机械性能和低碳高强度钢分量由Wired and Arc添加剂制造制造的低强度钢组件的变形行为”,材料科学和工程学:A,A,第1卷。[21] https://doi.org/10.1007/s11665-022-06784-7
我们根据投资对人和星球的影响水平(正面或负面)进行分类。投资对他们的工作和运营方式进行了评估。这些分类源自影响管理项目对影响投资定义的工作。对A类的投资至少表明他们正在积极寻求避免社会或环境伤害。B类投资还必须表明他们正在带来积极的社会和环境福利。在C类中的投资还必须为人和/或地球提供有意义的变化。对C+类的投资是最大的影响,并为服务不足的群体带来了有意义的变化,这些变化不太可能发生。
摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。
个性化和精确药物的长期目标是为具有疾病的患者准确预测给定治疗方案的结果。目前,由于患者群体中的潜在因素导致对感兴趣的药物的反应或对治疗相关的不良事件的反应不佳,因此许多临床试验无法满足其终点。事先确定这些因素并纠正它们可能会导致临床试验的成功增加。通过对健康和患病个体的OMICS进行综合和大规模的数据收集工作,导致了宿主,疾病和环境因素的宝藏,这有助于旨在治疗疾病的药物的有效性。随着OMICS数据的增加,人工智能允许对大数据进行深入分析,并为现实世界中的临床使用提供了广泛的应用,包括改善患者的选择和鉴定可行的伴侣疗法靶标,以改善更多患者的可转换性。作为用于复杂药物疾病 - 宿主相互作用的蓝图,我们在这里讨论了使用OMICS数据预测使用免疫检查点抑制剂(ICIS)预测癌症免疫疗法的反应和不良事件的挑战。基于OMICS的方法是改善患者结局的方法,因为在ICI病例中也已应用于广泛的复杂疾病环境中,体现了OMIC在深度疾病分析和临床使用中的使用。