1 威斯康星大学麦迪逊分校医学与公共卫生学院细胞与再生生物学系,美国威斯康星州麦迪逊 53705。2 俄克拉荷马州立大学营养科学系,美国俄克拉荷马州斯蒂尔沃特 74078。3 威斯康星大学麦迪逊分校化学系,美国威斯康星州麦迪逊 53706。4 威斯康星大学麦迪逊分校医学与公共卫生学院人类蛋白质组学项目,美国威斯康星州麦迪逊 53705 *通讯作者:Ahmed I. Mahmoud,博士。威斯康星大学麦迪逊分校医学与公共卫生学院 1111 Highland Ave, Room 4557 麦迪逊 53705 电话:+1 (608) 262-8682 电子邮件:aimahmoud@wisc.edu
目前的研究主题,标题为“内分泌和代谢性疾病中的Wnt信号传导”旨在强调Wnt信号传导途径在人类内分泌学中的功能作用,重点是代谢疾病。内分泌和代谢性疾病包括影响各种器官系统和生理过程的广泛疾病。Wnt信号通路最初以其在胚胎发育和组织稳态中的作用而被认可(1,2),在几种人类疾病(包括癌症)的发病机理中已成为至关重要的参与者(3,4),并极大地有助于疾病进展和潜在的治疗效果(5-7)。The fi rst study in this Research Topic clari fi ed that one of the mechanisms by which the “ Modi fi ed Qing ' E Formula ” (MQEF), used for more than 1,300 years in China as a treatment for lumbodynia, may exert its therapeutic effect on steroid-induced ischemic necrosis of the femoral head, is through targeting exosomal microRNAs (miRNAs) to regulate multiple信号通路,包括Wnt,PI3K-AKT和MAPK(Zhu等人)。在调查miRNA和WNT信号传导的另一份原始报告中,Tripathi等。证明成骨细胞中的miR-539-3p过表达下调了Wnt信号通路的几个组成部分,并恶化小梁的微体系结构,导致卵巢切除的小鼠的骨形成减少。在我们的研究主题的第三篇原始文章中,一组由小小的TU领导的研究者发现,小分子C91(CHIR99021)通过激活Wnt信号来促进骨髓基质细胞的成骨分化(Wang等人(Wang等))。
*路加福音:宾夕法尼亚州立大学,nkl10@psu.edu。Munshi:耶鲁大学,kaivan.munshi@yale.edu。 OOMEN:基督教医学院,anuoommen@cmcvellore.ac.in。 辛格:立陶宛银行和考纳斯技术大学,ssingh@lb.lt。 我们感谢Jere Behrman,Anne Ferguson-Smith,Nita Forouhi,Seema Jayachandran,K.M。 Venkat Narayan,Nigel Unwin和众多研讨会参与者的建设性评论。 约翰内斯·梅瓦尔德(Johannes Maywald),克里西卡·拉格帕蒂(Krithika Raghupathi)和阿斯塔·沃拉(Astha Vohra)提供了出色的研究帮助。 通过Grant R01-HD046940,剑桥大学,凯恩斯基金会和剑桥大学的牛顿基金以及在EUR项目ANR-17-EUER-0010下的Agence Nationale de la Rechche(ANR)的研究支持。 我们应对可能存在的任何错误负责。 这里表达的观点是作者的观点,不一定反映了立陶宛银行的立场。Munshi:耶鲁大学,kaivan.munshi@yale.edu。OOMEN:基督教医学院,anuoommen@cmcvellore.ac.in。 辛格:立陶宛银行和考纳斯技术大学,ssingh@lb.lt。 我们感谢Jere Behrman,Anne Ferguson-Smith,Nita Forouhi,Seema Jayachandran,K.M。 Venkat Narayan,Nigel Unwin和众多研讨会参与者的建设性评论。 约翰内斯·梅瓦尔德(Johannes Maywald),克里西卡·拉格帕蒂(Krithika Raghupathi)和阿斯塔·沃拉(Astha Vohra)提供了出色的研究帮助。 通过Grant R01-HD046940,剑桥大学,凯恩斯基金会和剑桥大学的牛顿基金以及在EUR项目ANR-17-EUER-0010下的Agence Nationale de la Rechche(ANR)的研究支持。 我们应对可能存在的任何错误负责。 这里表达的观点是作者的观点,不一定反映了立陶宛银行的立场。OOMEN:基督教医学院,anuoommen@cmcvellore.ac.in。辛格:立陶宛银行和考纳斯技术大学,ssingh@lb.lt。我们感谢Jere Behrman,Anne Ferguson-Smith,Nita Forouhi,Seema Jayachandran,K.M。Venkat Narayan,Nigel Unwin和众多研讨会参与者的建设性评论。约翰内斯·梅瓦尔德(Johannes Maywald),克里西卡·拉格帕蒂(Krithika Raghupathi)和阿斯塔·沃拉(Astha Vohra)提供了出色的研究帮助。通过Grant R01-HD046940,剑桥大学,凯恩斯基金会和剑桥大学的牛顿基金以及在EUR项目ANR-17-EUER-0010下的Agence Nationale de la Rechche(ANR)的研究支持。我们应对可能存在的任何错误负责。这里表达的观点是作者的观点,不一定反映了立陶宛银行的立场。
利用微生物从碳水化合物中生产大宗化学品和生物燃料,与低成本的化石燃料生产形成竞争。为了限制生产成本,需要高滴度、高生产率,尤其是高产量。这就要求参与产品形成的代谢网络必须是氧化还原中性的,并保存代谢能量以维持生长和维持。在这里,我们回顾了可用于节约能源和防止不必要能量消耗的机制。首先,概述了现有糖基发酵过程中的 ATP 生产。描述了底物水平磷酸化 (SLP) 和所涉及的激酶反应。基于这些反应的热力学,我们探索是否可以将其他激酶催化反应应用于 SLP。离子动力的产生是另一种节约代谢能量的方法。我们举例说明了碳碳双键还原、脱羧和氧化还原辅因子之间的电子转移如何支持离子动力的产生。从更广泛的角度来看,讨论了氧化还原电位与能量守恒之间的关系。我们描述了如何通过使用 CoA 转移酶和转羧酶来减少辅酶 A (CoA) 和 CO 2 结合所需的能量输入。糖和发酵产物的运输可能需要代谢能量输入,但可以使用替代运输系统来
NOD 样受体家族含吡啶结构域 3 (NLRP3) 炎症小体是一种寡聚复合物,可响应病原体感染的外源信号和非微生物来源的内源性危险信号而组装。当 NLRP3 炎症小体组装激活 caspase-1 时,它会促进炎症细胞因子白细胞介素-1B 和 IL-18 的成熟和释放。NLRP3 炎症小体的异常激活与各种疾病有关,包括慢性炎症、代谢和心血管疾病。NLRP3 炎症小体可以通过几种主要机制激活,包括 K + 外排、溶酶体损伤和线粒体活性氧的产生。有趣的是,代谢危险信号会激活 NLRP3 炎症小体以诱发代谢疾病。 NLRP3 包含三个关键结构域:N 端吡啶结构域、中央核苷酸结合结构域和 C 端富含亮氨酸重复结构域。蛋白质-蛋白质相互作用充当“踏板或刹车”,控制 NLRP3 炎症小体的激活。在这篇综述中,我们介绍了代谢危险信号诱导后或通过与 NLRP3 的蛋白质-蛋白质相互作用(可能发生在代谢疾病中)激活 NLRP3 炎症小体的潜在机制。了解这些机制将有助于开发治疗 NLRP3 相关代谢疾病的特定抑制剂。
摘要 目的 18 F-氟脱氧葡萄糖 (FDG) 正电子发射断层扫描 (PET) 揭示了轻度认知障碍 (MCI) 和阿尔茨海默氏痴呆 (AD) 患者的脑代谢改变。先前的代谢连接组分析源自患者群体,但不支持预测个体从当前 MCI 转变为 AD 的风险。我们现在提出一种个体代谢连接组方法,即 Kullback-Leibler 散度相似性估计 (KLSE),以表征预测个体从 MCI 转变为 AD 风险的全脑代谢网络。方法从 ADNI 数据库招募 FDG-PET 数据,包括 50 名健康对照者、332 名稳定性 MCI 患者、178 名发展为 AD 的 MCI 患者和 50 名 AD 患者。使用 KLSE 方法确定每个人的代谢脑网络。比较KLSE矩阵与组水平矩阵的组内和组间相似性与差异性,评估KLSE的网络稳定性和个体间变异性。采用多变量Cox比例风险模型和Harrell's一致性指数(C指数)评估KLSE及其他临床特征的预测性能。结果与典型的组水平方法相比,KLSE方法能捕捉到更多的顶叶和颞叶病理连接,并提供详细的个体信息,同时具有更高的网络组织稳定性(组内相似系数,sMCI为0.789,pMCI为0.731)。代谢连接组表达是优于其他临床评估的转变预测因子(风险比(HR)= 3.55;95% CI,2.77 – 4.55;P < 0.001)。在 Cox 模型中结合临床变量后,预测性能进一步提高,即 C 指数 0.728(临床)、0.730(组级模式模型)、0.750(成像连接组)和 0.794(组合模型)。
肿瘤相关巨噬细胞 (TAM) 在肿瘤微环境 (TME) 内经历代谢重编程,包括葡萄糖、氨基酸、脂肪酸代谢、三羧酸 (TCA) 循环、嘌呤代谢和自噬。TAM 和肿瘤细胞之间的代谢相互依赖性对巨噬细胞募集、分化、M2 极化和上皮-间质转化 (EMT) 相关因子的分泌有重大影响,从而激活肿瘤内 EMT 通路并增强肿瘤细胞侵袭和转移。肿瘤细胞代谢改变,包括缺氧、代谢物分泌、有氧代谢和自噬,影响 TME 的代谢格局,驱动巨噬细胞募集、分化、M2 极化和代谢重编程,最终促进 EMT、侵袭和转移。此外,巨噬细胞可以通过重新编程其有氧糖酵解来诱导肿瘤细胞 EMT。最近的实验和临床研究集中于巨噬细胞和肿瘤细胞之间的代谢相互作用,以控制转移和抑制肿瘤进展。本综述重点介绍了 TAM-肿瘤细胞代谢共依赖性在 EMT 中的调节作用,为高转移性肿瘤的 TAM 靶向疗法提供了宝贵的见解。调节肿瘤和 TAM 之间的代谢相互作用代表了治疗转移性癌症患者的一种有前途的治疗策略。
怀孕是一个至关重要的时期,影响了孕产妇和胎儿健康,对孕产妇的代谢,胎儿生长和长期发育产生了影响。虽然母体代谢组在怀孕期间经历了重大变化,但孕产妇尿液的纵向转移在很大程度上没有探索。在这项研究中,我们应用了基于液相色谱 - 质谱法的非靶向代谢组学来分析346个母体尿液样本,从36位具有不同背景和临床特征的女性中收集的整个怀孕期。关键的代谢产物变化包括糖皮质激素,脂质和氨基酸衍生物,表明有系统的途径改变。我们还开发了一种机器学习模型,可以使用尿液代谢物准确地预测胎龄,从而提供一种非侵入性妊娠约会方法。此外,我们证明了尿液代谢组预测分娩时间的能力,为产前护理和交付计划提供了补充工具。这项研究强调了尿液不靶向代谢组学在产科护理中的临床潜力。
B澳大利亚墨尔本La Trobe University,La Trobe University,生物医学与环境的微生物学,解剖学,生理学和药理学系。B澳大利亚墨尔本La Trobe University,La Trobe University,生物医学与环境的微生物学,解剖学,生理学和药理学系。