†dv(dv2121@cumc.columbia.edu)摘要微生物物种的对应关系在其代谢特性,基因组组成和生态分布方面具有显着的多样性。系统生物学的一个核心挑战是了解细菌的基因组,代谢和表型特性之间的关系。但是,目前尚不清楚代谢网络的结构如何定义并反映了整个生命树中各种细菌物种的生活方式。通过分析细菌的数千种基因组规模的代谢模型,我们发现了它们在约800个代谢反应或约2000蛋白质编码基因上在独立碳源上生长的渗透样过渡。观察到的过渡的特征是代谢网络功能连通性的显着变化主要与中央碳代谢和TCA循环的完成有关。引人注目的是,细菌的实验观察到的表型特性在过渡下和之上也表现出两种明显不同的状态。物种在过渡时代以下具有代谢网络大小的物种通常是强制性共生体,并且需要复杂的最小培养基才能生长。相比之下,网络高于过渡的物种主要是自由生活的通才。观察到的渗透转变也反映在多种其他基因组特性中,例如,调节基因的比例大大降低了过渡到过渡的低于过渡的新代谢表型的较高的可变性。此外,我们发现来自公正的环境宏基因组测序的细菌基因组大小的分布也反映了与观察到的过渡相对应的基因组簇。总体而言,我们的工作确定了微生物代谢和生活方式的两个质量不同的制度,其特征在于其代谢网络的不同结构和功能特性。
摘要尽管胰岛素疗法已存在一个多世纪,血糖监测也取得了进展,但糖尿病及其并发症仍然是一个沉重的负担。目前的药物治疗不持久,治疗结束后症状经常复发,而且不同患者的反应也不同。此外,许多药物的有效性会随着时间的推移而减弱,这凸显了对替代疗法的需求。维持 β 细胞质量和促进 β 细胞再生提供了更可治愈的治疗方法,而如果无法再生,细胞替代疗法可能是一种选择。对于这两种策略,提高 β 细胞存活率都至关重要。生长激素释放激素 (GHRH) 最初被发现是因为它能够刺激垂体产生和释放生长激素 (GH)。除下丘脑外,GHRH 还在外周组织中产生,其受体 GHRHR 在垂体、胰腺、脂肪组织、肠道和肝脏等组织中表达。多项研究表明,GHRH 及其类似物可增强体外和动物模型中产生胰岛素的胰腺 β 细胞的存活率。这些有益作用有力地支持了 GHRH 激动剂和拮抗剂在临床治疗人类代谢疾病或增强用于移植的细胞中 β 细胞存活率方面的潜力。在本综述中,我们将讨论下丘脑和下丘脑外 GHRH 在生理和病理背景下的代谢中的作用,以及其潜在机制。此外,我们还将讨论 GHRH 类似物对治疗代谢疾病的潜在有益作用。
图1:肾素 - 血管紧张素 - 醛固酮系统(RAAS)。 由肝脏产生的血管紧张素原质由肾素转化为血管紧张素I,该肾脏由肾脏分泌。 an- giotensin I通过肺中的血管紧张素转换酶(ACE)进一步转化为血管紧张素II。 血管紧张素II作用于其受体,以刺激各种生理反应,包括血管血管的血管收缩,刺激大脑的交感神经流出,液体保留和肾脏中的钠,醛固酮分泌,肾上腺腺体中的醛固酮分泌,以及心脏中的肥大和纤维化。 药物,例如肾素抑制剂(例如Aliskiren),ACE抑制剂(例如Capteropril,Enalapril,Ramipril)和Angiotensin II受体阻滞剂(Arbs;例如,Irbesartan,Losartan,Losartan,Losartan,Valsartan,Valsartan,Valsartan)目标特定点在此途径中,以管理高度和相关条件。图1:肾素 - 血管紧张素 - 醛固酮系统(RAAS)。由肝脏产生的血管紧张素原质由肾素转化为血管紧张素I,该肾脏由肾脏分泌。an- giotensin I通过肺中的血管紧张素转换酶(ACE)进一步转化为血管紧张素II。血管紧张素II作用于其受体,以刺激各种生理反应,包括血管血管的血管收缩,刺激大脑的交感神经流出,液体保留和肾脏中的钠,醛固酮分泌,肾上腺腺体中的醛固酮分泌,以及心脏中的肥大和纤维化。药物,例如肾素抑制剂(例如Aliskiren),ACE抑制剂(例如Capteropril,Enalapril,Ramipril)和Angiotensin II受体阻滞剂(Arbs;例如,Irbesartan,Losartan,Losartan,Losartan,Valsartan,Valsartan,Valsartan)目标特定点在此途径中,以管理高度和相关条件。
引言 1 2 癌细胞的细胞代谢上调,以支持肿瘤的生长和转移。癌症代谢的一个关键部分是一碳 (1C) 叶酸循环,它支持维持快速增殖所需的核苷酸和氨基酸合成。针对一碳代谢进行癌症治疗的历史可以追溯到 1948 年,当时 Sydney Farber 使用抗叶酸药物治疗白血病 (1)。早期的抗叶酸化疗药物,如甲氨蝶呤,至今仍是有效的癌症治疗方法,但副作用很常见,而且可能很严重 (2,3)。8 9 亚甲基四氢叶酸脱氢酶/环化水解酶 2 (MTHFD2) 作为癌症靶点,一直备受关注,自 2012 年 Jain 及其同事证明 MTHFD2 是癌症中过表达最高的代谢酶之一 (4) 以来,该研究一直备受关注。 Nilsson 等人的荟萃分析证实了这一观点,他们发现 MTHFD2 在 16 种癌症类型中上调 (5)。这 13 促使大量研究表明 MTHFD2 敲低会抑制癌症生长,更重要的是,14 开发出针对 MTHFD2 表达癌症的抑制剂,这些抑制剂在小鼠 15 模型中有效 (6-8)。16
在所有生命系统中的代谢网络的显着保护表明,代谢的基本结构是在地球上最早的生命阶段建立的,至少在40亿年前出现。在现代生物体中,代谢网络跨越了数百种具有数千种不同代谢物的酶[1]。在该网络中,“分解代谢”和“合成代谢”反应,即累积或分解代谢产物的反应是相互交织的,这意味着早期的代谢含有两种异植物的特征(即,胞外代谢物)和自身植物(即自我自我sysysysessiss)的特征(即对细胞外代谢物)和自身植物的消耗。在关于这种保守的基本结构的起源的竞争假设中,人们越来越多地认为,该网络来自非酶反应序列,至少部分由铁(Fe(II))和其他金属离子催化剂驱动[2-4]。在该模型中,早期酶已经是基于氨基酸的,并且是通过加速和增加非酶反应的特异性来选择的[5-8]。一个模型将非偶氮反应序列放置在代谢网络的根部也克服了“最终产品问题”,它描述了多步骤,酶促反应序列需要一个前体才能进化:形成Intermediate的酶不能直接选择Darwinian进化,因为它们不提供任何优势,因为它们不提供底层步骤,因此选择了9个功能,因此可以选择 - 因此,它可以选择 - 并选择了''''''''''''''''''''''''''''''''''''''''的确,关于金属离子在代谢进化中作用的证据正在增长。即使在没有酶的情况下,金属离子也会通过互转换反应(例如参与糖酵解的互转换反应,五旬节磷酸盐途径(PPP))以及氧化和还原性的KREBS循环[2,3]。最近的研究表明,大约90%的代谢途径取决于现代生物中的金属离子[10],该铁被回收为最多的
。CC-BY-NC 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 17 日发布。;https://doi.org/10.1101/2024.07.16.603764 doi:bioRxiv 预印本
Maj-Linda Selenica, PhD , Assistant Professor, SBCoA & Biochemistry “Regulation of brain glucose metabolism via eIF5A hypusination - lessons from an unusual modification in TDP-43 proteinopathies” Tritia Yamaski, MD PhD , Assistant Professor, Neurology “Developing a workflow for discovery of biofluid markers in Parkinson's Disease” Brad Hubbard博士,SCOBIRC和生理学助理教授,“使用PDE5抑制作用来靶向轻度TBI之后的脑毛细管线粒体功能障碍” Amelia Pinto,Phd,博士,微生物学,免疫学和分子遗传学的微生物学,免疫学和分子遗传学的司机助理教授“ cr驱动于病毒式疾病的驱动器”。
酶活性通过用500μl的提取缓冲液进行vig口摇(20%(v/v)甘油,1%triton X-100(v/v),50 mm hepes – koH(ph 7.5),10 mm mgcl 2,1 mm edta,1%triton x-100(v/v),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(v/v),1%X-100(v/v),1%MM emMM MM E.酸,1 mm苯甲米丁,20μM亮肽素,0.5 mM DTT,1 mM苯基甲基磺酰基氟化物,10%聚乙烯基 - 丙吡咯烷酮(W/V)]。葡萄糖激酶(GK),FRUC TOKINAPE(FK),谷氨酸脱氢酶(GDH),磷酸烯醇丙酮酸羧化酶(PEPC),苹果酸脱氢酶(MDH),丙酮酸激酶(PK),总浓酸酯(CM),米尔酸酯(CS),米尔酸酯(CM),米尔酸酯(CM)通过分光光度法测定NADP依赖性的异戊酸脱氢酶(ICDH)酶,并用机器化的微孔板测定法测定(Gibon等人。,2004)。在25°C孵育后,NAD(P)H的演变在340 nm处被固定在340 nm处。通过循环反应在570 nm处测量了GDH的活性,涉及在存在醇脱氢酶和苯嗪硫代硫酸盐的情况下,涉及3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑四唑。cs ac ac titive。(2003)。通过检查生物标准(番茄叶提取物)的恢复,并确保提取物的稀释对活动的估计没有影响,如Bénard和Gibon(2016)所述,可以通过检查生物标准的恢复(番茄叶提取物)来验证。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2024 年 11 月 19 日发布了此版本。;https://doi.org/10.1101/2024.11.18.624092 doi:bioRxiv 预印本
心力衰竭 (HF) 与心脏代谢改变有关。1 心脏代谢的变化部分是由于适应不良的机制,部分是由于糖尿病和缺血性心脏病等合并症。因此,HF 应被视为伴有代谢衰竭的全身性和多器官综合征,而衰竭的心脏可看作是没油的发动机。2 心力衰竭时发生的代谢紊乱不仅限于心肌细胞,还扩展到骨骼肌和血管系统,从而引起导致运动能力下降(疲劳、肌肉无力、运动受限)和病情进展的变化(图 1)。1 此外,由于当发生这些代谢变化时心脏和骨骼肌的代谢效率较低,患者在任何特定运动水平上都会消耗更多能量。