摘要:霉酚酸酯 (MMF) 是一种免疫抑制药物,获批用于预防接受实体器官移植的患者的移植排斥反应,并进一步用于治疗各种自身免疫性疾病。MMF 表现出显著的药代动力学个体间和个体内差异,需要采用个性化治疗方法来实现最佳治疗效果,同时降低不良反应风险。本综述的目的是总结影响 MMF 及其活性代谢物霉酚酸药代动力学的因素,以推导出个性化治疗策略的建议。根据四个药代动力学阶段分析了假定的预测因素,为临床实施的 MMF 剂量优化提供了工具和目标。
抽象目的Tepotinib是一种高度选择性,有效的间质 - 上皮过渡因子(MET)抑制剂,批准用于治疗具有MET Exon 14跳过的非小细胞肺癌(NSCLC)。该人群药物的目标(PK)分析是为了评估Tepotinib及其主要循环代谢物MSC2571109A的剂量暴露关系,并识别可预测PK变异性的内在/外在因素。方法数据包括来自12例癌症患者和健康参与者的研究。一种顺序建模方法用于分析父和代谢物数据,包括协变量分析。使用基于自举分析的森林图说明了观察到的协变量与PK参数之间的潜在关联。导致一个两室模型,具有顺序的零和一阶吸收,并且从中央隔室中消除了一阶消除,最好描述了人类在30-1400 mg的剂量范围内tepotinib的等离子体PK。tepotinib的生物可用性被证明是剂量依赖性的,尽管生物利用度主要以500 mg的治疗剂量高于治疗剂量下降。种族,年龄,性别,体重,轻度/中度肝损伤以及轻度/中度肾功能障碍的内在因素以及阿片类镇痛药和吉非替尼的外在因素对Tepotinib PK没有相关作用。tepotinib的有效半衰期约为32小时。结论Tepotinib显示至少至少具有治疗剂量的剂量比例,并且与时间无关的清除率具有适合每日给药的概况。均未确定的协变量对Tepotinib暴露或所需剂量调整具有临床意义。
人类神经炎症过程的抽象无创测量可以实质性地帮助许多疾病(包括慢性疼痛)的诊断和治疗性发育。几个质子磁共振光谱(1 H-MRS)代谢物已与神经胶质活性(即,胆碱和肌醇)联系在一起,发现在慢性疼痛患者中正在改变,但是它们在神经炎性级联反应中的作用尚不众所周知。我们的多模式研究评估了43例患有纤维肌痛的患者的静止功能磁共振成像连通性和1 H-MRS代谢物浓度,这是一种先前证明的慢性集中式疼痛障碍,包括神经毒素性成分和16个健康对照。患者在前岛(AINS)(P 5 0.03)中表现出胆碱(但肌醇)的升高,胆碱水平更高,与疼痛干扰较差有关(r 5 0.41,p 5 0.01)。此外,AINS和pe骨之间的静息功能连通性降低与疼痛干扰(全脑分析,P校正,0.01)和升高的AINS胆碱(R 5 2 0.37,P 5 0.03)有关。实际上,AINS/pe骨连通性在统计上介导了AINS胆碱与疼痛干扰之间的联系(P,0.01),突出了神经炎症会影响临床疼痛功能障碍的途径。为了进一步阐明观察到的效应的分子底物,我们研究了假定的神经炎性1 H-MRS代谢物如何与非人类神经毒素炎症的非人类灵长类动物模型中的离体组织炎症标记有关。结果表明,皮质胆碱水平与神经胶质原纤维酸性蛋白(Spearman R 5 0.49,P 5 0.03)相关。胆碱是一种假定的神经炎症1 H-MRS评估的代谢物,纤维肌痛升高并与疼痛干扰有关,可能与这些患者的星形胶质细胞增多有关。
主题2025/2026:维持全身稳态并应对营养和环境挑战的组织间代谢组学需要多个器官和组织的协调。为了响应各种代谢需求,较高的生物已经发展出一种组织间通信系统,通过该系统可以通过该系统影响遥远组织中的代谢途径。这些交流途径的失调症失调会导致肥胖,糖尿病,肺部疾病,癌症,感染,肝病,神经退行性疾病,精神疾病和动脉粥样硬化等人类疾病。近年来,诸如数据驱动的生物信息学,代谢组学,蛋白质组学和脂肪组学等技术进步有助于了解系统性代谢跨言论及其潜在机制的复杂性。这种多学科方法为代谢途径的相互联系提供了前所未有的见解,并强调了维持整个身体体内稳态所需的动态交流和协调。_________________________________________________Looking to the future, this call for proposals aims to promote research between the DZGs in the following areas: (i) exploring the influence of external factors on inter-organ communication, (ii) developing a more detailed picture of metabolic heterogeneity within organs, (iii) investigating dynamic changes in metabolite fluxes and metabolic pathways under different physiological and pathological conditions, to gain a more functional and context-specific understanding of (IV)制定综合方法来解密控制代谢的复杂分子网络,以及(v)促进生物标志物,药物靶标的鉴定,并开发出更有效的代谢疾病治疗策略。
MXP量子500套件由系统适用性测试样品和具有已集成的内部标准的专利96井滤板组成。尿液扩展集已用于样品分析,包括: - 校准标准7冻干浓度水平,范围通常在人类尿液中观察到,以进行准确的定量。- 基于尿液的质量控制(QCS)3冻干QC水平,用于性能检查和准确的数据归一化。- 带有相似盐组成和背景信号的样品样品样基质,用于计算检测极限(LOD)。- 仪器特异性方法在预期的尿液代谢物丰度周围优化了MRM。- 样品制备方案修改工作流程,以改善尿液代谢产物的衍生化。
氟西汀在怀孕期间不应使用,除非妇女的临床状况需要用氟西汀治疗并证明胎儿的潜在风险是合理的。在期间应避免避免停止治疗。如果在怀孕期间使用氟西汀,则应谨慎行事,尤其是在怀孕晚期或劳动开始之前,由于据报道了新生儿中的其他一些影响:烦躁,震颤,颤音,恐怖分子,持续的哭泣,吮吸或睡眠困难。这些症状可能表明血清素能作用或戒断综合征。发生的时间和这些症状的持续时间可能与氟西汀(4-6天)及其活性代谢物Norfluoxetine(4-16天)有关。
CYP2D6活性测定试剂盒(荧光测定法)(AB211078)允许快速测量生物样品(例如肝脏微体体)中天然或重组细胞色素P450 2D6(CYP2D6)活性。该测定法利用了非荧光CYP2D6选择性底物,该底物被转换为在可见范围内检测到的高度荧光代谢物(EX/EM = 390/468 nm),从而确保了高信号与背景比,而自动荧光的干扰很少。CYP2D6特异性活性。该套件包含足够的试剂来执行100组成对反应(在存在 /不存在抑制剂的情况下)。
摘要背景患有单心室 (SV) 心脏病的儿童和青少年经常会患上难治性心力衰竭 (HF)。我们对这背后的分子和生化原因的理解并不完善。因此,迫切需要能够预测结果并为治疗提供合理依据并增进我们对 HF 基础的理解的生物标志物。目的我们试图确定代谢组学方法是否能提供 SV 儿童和青少年 HF 的生化特征。如果有意义,这些分析物可作为预测结果和告知 HF 生物学机制的生物标志物。方法我们应用了一种多平台代谢组学方法,由质谱 (MS) 和核磁共振 (NMR) 组成,分别得到了 495 个和 26 个代谢物测量值。血浆样本来自一组年龄在 2-19 岁之间的年轻 SV 受试者的横断面,其中 10 个对照 (Con) 受试者和 16 个 SV 受试者。在 SV 受试者中,九人被诊断为充血性 HF (SVHF),七人未患 HF。代谢组学数据与临床状态相关联,以确定是否存在与 HF 相关的特征。结果 3 个队列的年龄、身高、体重或性别没有差异。然而,使用 ANOVA 对代谢组学谱进行统计分析显示,44 种代谢物在各队列之间存在显著差异,其中 41 种通过 MS 分析,3 种通过 NMR 分析。这些代谢物包括酰基肉碱、氨基酸和胆汁酸,这将 Con 与所有 SV 受试者区分开来。此外,代谢物谱可以区分 SV 和 SVHF 受试者。结论这些是首次显示与 SV 儿童和年轻人 HF 相关的明确代谢组学特征的数据。有必要进行更大规模的研究以确定这些发现是否可以预测及时进展为 HF 以提供干预。
SIAR 人类健康排泄、分布和药代动力学研究的总结,已使用 14 C-邻苯二甲酸二烯丙基酯 (DAP) 对大鼠和小鼠进行了研究。在排泄和分布研究中,通过管饲法施用 14 C-DAP,并收集 14 CO 2 、挥发性代谢物、尿液和粪便 24 小时。在大鼠中,25 – 30% 的 DAP 以 CO 2 形式排泄,50 – 70% 在 24 小时内出现在尿液中。在小鼠中,6 – 12% 的 DAP 以 CO 2 形式排泄,80 – 90% 在 24 小时内随尿液排泄。对通过尾静脉注射 14 C-DAP 的大鼠和小鼠进行了组织分布和药代动力学研究。发现 DAP 从大鼠和小鼠的血液中迅速清除,两种物种的半衰期约为 2 分钟。在两种物种中静脉注射 DAP 30 分钟后,血液、肝脏、肾脏、肌肉、皮肤或小肠中均未发现 DAP。在注射 14 C-DAP 的大鼠和小鼠的尿液中发现了邻苯二甲酸单烯丙酯 (MAP)、烯丙醇 (AA)、3-羟丙基硫脲酸 (HPMA) 和一种未知的极性代谢物。注射 DAP 或 AA 后,大鼠尿液中存在极性代谢物,表明该化合物是 AA 的代谢物。DAP 对大鼠的肝毒性比对小鼠的更大。在 AA 的毒性方面观察到了相同的物种差异。由于 DAP 代谢为 AA,因此推测 DAP 的差异性肝毒性与 AA 的毒性有关。AA 是一种强效的门脉周围肝毒性物质,由于小鼠产生的 HPMA 作为 II 期代谢的副产物比大鼠多,因此推测 DAP 的差异性肝毒性与谷胱甘肽与 AA 或丙烯醛(AA 的活性代谢物)结合的程度有关。大鼠口服 LD 50 值 [NTP] 为 891 mg/kg bw(雄性)和 656 mg/kg bw(雌性),小鼠口服 LD 50 值 [NTP] 为 1070 mg/kg bw(雄性)和 1690 mg/kg bw(雌性)。狗口服 LD 50 约为800 mg/kg bw(合并)。经皮 LD 50(兔子)为 3300 mg/kg bw。大鼠吸入 LC 50(一小时)为 8300 mg/m 3(混合)、10310 mg/m 3(雄性)和 5200 mg/m 3(雌性)[FIFRA 指南,43FR 37336]。DAP 对兔子皮肤 [16 CFR 1500.41] 或眼睛 [FSHA 16 CFR 1500] 无刺激性。DAP 在小鼠局部淋巴结测定中具有致敏性 [OECD TG 429]。在重复剂量毒性研究 [NTP] 中,雄性和雌性大鼠(每性别每组 10 只)通过管饲法服用 DAP,剂量分别为 0、25、50、100、200 和 400 mg/kg bw/天,每周 5 天,共 13 周。八只接受 400 mg/kg bw/day 剂量的雄性大鼠在研究期间死亡或被发现处于垂死状态时被杀死。接受 400 mg/kg bw/day 剂量的雄性大鼠的体重增加似乎比对照组低。在 400 mg/kg bw/day 剂量下,两性均观察到临床症状,在 200 mg/kg bw/day 剂量下出现频率较低,但在较低剂量下未观察到临床症状。临床症状包括腹泻、毛发粗糙或头部周围脱发、驼背姿势和全身消瘦。在尸检中,所有八只早死的 400 mg/kg bw/day 雄性大鼠均观察到肝脏严重异常,其中三只雄性大鼠还表现出多灶性肾皮质小管坏死。许多雄性大鼠的肺部呈现暗色或鲜红色。在 400 mg/kg bw/day 剂量下,两只幸存的雄性大鼠和大多数雌性大鼠出现肝损伤,在 200 mg/kg bw/day 剂量下,5/10 的雄性大鼠出现肝损伤。严重程度似乎与剂量有关,雄性大鼠比雌性大鼠严重。组织病理学检查表明肝脏是主要靶器官。在 200 和 400 mg/kg bw/day 剂量下,雄性大鼠和雌性大鼠出现肝小叶门管周围损伤、坏死、纤维化、胆管增生和肝细胞增生。
