抽象一些具有大小,形状,电荷和两亲性体系结构类似于短阳离子A-螺旋肽的大小,形状,电荷和两亲性体系结构的 已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。 扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。 在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。 此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。 扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。 在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。 此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。已显示出靶向和稳定DNA G四链体(G4S)的靶向和稳定,并在体外稳定了G4调节基因在人类细胞中的表达。扩大可以充当有效的DNA G4粘合剂并下调包含G4形成序列的基因的金属结构库,我们调查了两个对映体对对映体的相互作用的相互作用C-Myc,C-Kit和K-Ras Oncogenes。在所有研究的G4形成序列中,金属纤维表现出比双链DNA的优先结合,并在包含G4形成序列的模板链上诱导了DNA聚合酶的诱导停滞。此外,如RT-QPCR分析和蛋白质印迹揭示了研究的Myallohelices在HCT116人类癌细胞中mRNA和蛋白水平上抑制了C-MYC和K-RAS基因在mRNA和蛋白水平上的表达。
该文章的此版本已被接受,在同行评审后被接受,并受到Springer Nature AM的使用条款的约束,但不是记录的版本,也不反映接受后的改进或任何更正。记录的版本可在线获得:https://doi.org/10.1038/s41929-023-00924-5
金属有机框架(MOF)是最具吸引力的功能性多孔材料之一。但是,它们的加工性和处理性仍然是一个重大挑战,因为MOF通常由于其结晶性而以粉末形式出现。将MOF和纤维素底物结合到制造工程材料提供了理想的解决方案,可以扩大其作为功能材料的利用。MOF/纤维素复合材料进一步提供了MOF的显着机械性能,可调孔隙度和可访问的活性位点。在这篇综述中,我们总结了MOF/纤维素复合材料的当前最新制造路线,其特定重点是利用三维生物基于生物的纤维素支架的独特潜力。我们强调了它们作为气相和液相的吸附剂的利用,用于抗菌和蛋白质固定,化学传感器,电能量存储和其他新兴应用。此外,我们讨论了高级功能材料的MOF/纤维素复合材料领域的当前局限性和潜在的未来研究方向。
T&E在今天至2050年之间开发了三种用于电池原材料的需求,尤其是锂,镍,钴和锰的情况。所有场景都假设到2050年的乘客运输充分电气化,并加速了电池电动汽车的摄取,直到现在从现在开始最大化CO 2节省。“照常业务” -BAU-场景采取了当前预期的电池大小和化学行业趋势,以及现状的私家车活动。“加速创新,更少的汽车km”(或加速 - 场景)假设向较小的电池进行了实质性转移,更快地吸收了具有较少关键金属的电池化学物质(例如锂电池,没有钴或镍(LFP)或钠离子电池),而私人汽车驱动的公里更少。最终的“积极创新和更少的汽车公里”(或激进)的情况将这些假设带到了另一个缺点,以实现更激进的变化。
外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
摘要:在六周的时间内研究了重金属对土壤微生物过程的影响。分析级(Sigma)铜,锌和镍的硫酸盐盐分别添加并组合到土壤样品中,并在不同的塑料锅中孵育。样品是从锅中从盆中取出的,并测量了微生物碳和氮矿化,微生物生物量碳和呼吸的速率。结果表明金属对测量参数的影响很明显(p <0.05。)。在第6周的上进行后第6周,铜的碳累积率很高(6.03%)和铜:锌(5.80%)处理,但镍和锌的处理率很低(分别为4.93%和5.02%)。用铜和铜处理的样品中的氮矿化速率为0.41和0.44%,而实验开始时获得的氮矿化速率为0.22%-0.24%。土壤微生物生物量碳的平均值从183.7 - 185.6μg/g的平均值下降,在处理铜的样品中分别为100.8和124.6μg/g。在铜中的平均速率为2.51-2.56μg的土壤微生物的C/g呼吸速度下降到0.98、1.08和1.61μg的C/g:锌,铜和锌处理的土壤在实验结束时进行了处理。结果表明金属的添加剂或协同作用。
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
背景是磷酸锂(LFP)的普及,与锂镍钴锰氧化物(NCM)相比,其成本效益引起,通过用LFP阴极代替NCM阴极来实现。传统上,LFP的能量密度有限,影响了电动汽车(EV)的驱动范围。文献中的许多文章证实了LFP的缺点,包括2023年《福布斯》杂志的文章,标题为“磷酸锂,将是电动电动电池中的下一件大事”,它指出,与NCM相比,LFP的LFP能量密度降低了30-40%,与NCM相比,LFP天主教徒与NCM的安全优势相比。A link to this article can be found at https://www.forbes.com/sites/samabuelsamid/2023/08/16/lithium- iron-phosphate-set-to-be-the-next-big-thing-in-ev-batteries/?sh=340446717515.
重金属污染由于其持续性,更高的毒性和顽固性而成为全球严重关注的问题。这些有毒的金属威胁着环境的稳定性和所有生物的健康。重金属还通过食用受污染的食物并对人类健康造成有毒作用,进入人类食物链。因此,必须对HMS污染的土壤进行修复,并且需要在更高的优先级上解决。使用微生物被认为是打击HMS不利影响的有前途的方法。微生物有助于恢复恶化环境的自然状况,并具有长期的环境影响。微生物修复可防止HMS的浸出和动员,并且还使HMS的提取变得简单。因此,在这种情况下,最近的技术进步允许将生物修复用作补救污染土壤的必要方法。微生物使用不同的机制,包括生物呼吸,生物蓄积,生物含量,生物转化,生物胆碱化和生物矿化,以减轻HMS的影响。因此,在此评论中,在此综述中保持有毒的HMS探讨细菌,真菌和藻类在污染土壤的生物修复中的作用。本综述还讨论了可用于提高微生物效率以补救HMS污染土壤的各种方法。它还强调了在未来的研究计划中必须解决的不同研究差距,以改善生物修复效率。
堪培拉,2025年2月5日 - 气候资本论坛是一个投资者,行业,气候金融专家和慈善家的网络,呼吁联邦政府在本周期间立即通过生产税收抵免立法(PTC)。PTC激励措施构成了澳大利亚未来的财务骨干,其付费付费模式可确保仅一旦产品成功生产该产品才能投资于行业。总理安东尼·阿尔巴尼斯(Anthony Albanese)的承诺鼓励论坛,即通过生产税收抵免立法是他的第一个优先事项,我们鼓励议会的各个方面团结这项民族建设立法。气候资本论坛代表本周在堪培拉举行,与议会议员会面,以确保澳大利亚能源安全的未来。以下代表的进一步评论。气候资本论坛的关键要求