•将能源管理和工作流计划集成到数字神经中心。矿工应建立数字神经中心,并旨在以更加集成,动态的方式管理能量流和工作流程。这将有助于提高其电网的弹性,并最大程度地减少所需的物理存储量。但是,这种优化水平将要求神经中心对能量生态系统具有完全可见的可见性(电力供应和存储容量的当前状态以及在未来的几个小时和几天内提供电力的可见性),并且能量系统可以预见。神经中心将需要人工智能和熟练的劳动力来管理和不断改善系统的性能。能源管理和工作流程协调/集成的一个例子可以是存储工作而不是能源:氢燃料卡车可以是 div>
减缓气候变化将创造新的自然资源和供应链机遇和困境,因为建造新的低碳能源设备和基础设施需要大量原材料 ( 1 )。然而,尽管人们试图改善治理和企业管理,但许多矿产和金属资源的采购仍然发生在普遍认为管理不善的地区,环境状况仍然变化无常,在某些情况下,甚至成为资源开采地冲突的根源 ( 2 )。因此,这些采掘和冶炼行业在世界许多地方留下了环境恶化、对公共健康的不利影响、边缘化社区和工人以及生物多样性破坏的遗产。我们确定了关键的可持续性挑战,这些挑战涉及供应金属和矿物(包括钴、铜、锂、镉和稀土元素 (REE))的行业实践,这些金属和矿物是太阳能光伏、电池、电动汽车 (EV) 电机、风力涡轮机、燃料电池和核反应堆等技术所必需的。然后,我们提出了四项整体建议,以使采矿和金属加工更加可持续和公正,并使采矿和采掘业更加高效和有弹性。
这种营销传播已为专业投资者准备,但是本文档中规定的WisdomTree产品可以在某些司法管辖区向任何投资者提供,但要遵守适用的法律和法规。由于可能未授权产品,或者其提供在您的管辖范围内可能受到限制,因此每个人或实体的责任都可以满足自己对相关管辖权的法律和法规的全面遵守。建议在任何申请投资者之前,就对产品投资的适用性和后果采取所有必要的法律,法规,税收和投资建议。过去的表现不是未来绩效的可靠指标。本文档中包含的任何历史表现都可以基于背部测试。回测是通过将投资策略应用于历史数据来模拟这种策略的表现来评估投资策略的过程。回测试的性能纯粹是假设的,并且本文档中仅出于信息目的提供。回测的数据不代表实际的性能,不应将其解释为实际性能的指示。任何投资的价值可能会受到汇率变动的影响。任何投资决定都应基于适当的招股说明书中包含的信息,并在寻求独立的投资,税收和法律建议之后。这些产品可能不在您的市场中或适合您。本文档的内容并不构成投资建议,要约的报价,也不构成购买任何产品或进行任何投资的要约。
摘要:暴露于环境污染物与心血管疾病的风险增加有关。超出了颗粒空气污染的广泛证据,积累的证据支持了暴露于铅,镉和砷等非必需金属的暴露,这是全球心血管疾病的重要贡献。人类通过空气,水,土壤和食物以及广泛的工业和公共用途接触金属。污染物的金属干扰了关键的细胞内反应和功能,导致氧化应激和慢性炎症会导致内皮功能障碍,高血压,表观遗传性Dys-调控,发热性血症以及心脏激发和收缩功能的变化。铅,镉和砷与亚临床动脉粥样硬化,冠状动脉狭窄,钙化以及缺血性心脏病和中风的风险增加,左心室肥大和心脏衰竭和外周动脉疾病有关。流行病学研究表明,暴露于铅,镉或砷与心血管死亡有关,主要归因于缺血性心脏病。减少金属暴露的公共卫生措施与心血管疾病死亡的减少有关。颜色和低社会经济手段的种群更常见于金属,因此具有金属诱导的心血管疾病的风险更大。以及加强公共卫生措施,以防止金属暴露,发展更敏感和选择性的测量方法,对金属暴露的临床监测以及金属螯合疗法的发展可能会进一步减轻金属暴露的心血管疾病负担。
1个MAT阐述中心和结构研究,国家科学研究中心,研究清洁8011,29 Rue J. Marvig,BP 94347,Cedex 4,31055法国图卢兹; alain.couret@cemes.fr(A.C。); lise.durand@cemes.fr(l.d.)2大学ÉtoulouseIII-保罗·萨巴蒂尔(Paul Sabatier),118号纳博恩路线,塞德克斯9,31062法国图卢兹3劳伦斯·利弗莫尔国家实验室,7000 East Av。,Livermore,Livermore,CA 94550,美国,美国; voisin2@llnl.gov 4化学研究所和马特·riaux Paris-Est,研究单位混合7182,2-8,Rue Henri Dunant,94320 Thiais,法国; Zo fi a.trzaska@univ-paris13.fr 5 Universit é Sorbonne Paris Nord, 99, avenue Jean-Baptiste Cl é ment, 93430 Villetaneuse, France 6 Onera—The French Aerospace Lab, Department of Materials and Structures, University É Paris-Saclay, 29 avenue de la Division Leclerc, BP 72, 92322 Cedex, France; marc.thomas@onera.fr *通信:monchoux@cemes.fr
在过去的十年中,将破裂的反转对称性与金属电导率结合在一起的材料已从思想实验转变为增长最快的研究主题之一。在2013年,在金属3中观察到第一个无可争议的极性转变lioso 3启发了对该受试者的理论和实验性工作的激增,发现了许多材料,这些材料结合了以前被认为是禁忌的特性[nat。mater。12,1024(2013)]。 通常在新生的领域中,兴趣的突然上升伴随着多样化(有时是爆发)术语。 尽管“类似铁电的”金属在理论上是正确确定的,即,在表现出金属电子传输的同时,经历对称性的过渡到极相的材料,但实际材料却发现了多种方法来推动这种定义的边界。 在这里,我们从理论,模拟和实验的角度审查并探索了新兴的极地金属边界,同时引入了统一的分类学。 该框架允许人们描述,识别和分类极性金属;我们还使用它来讨论“铁电”和“金属”一词固有的理论与现实模型之间的一些基本张力。此外,我们强调了静电掺杂模拟在建模极性金属的不同亚类中的缺点,并指出了这种方法的假设如何与实验不同。 我们包括一项已知材料的调查,该调查将极性对称性与金属电导率结合在一起,并根据用于协调这两个顺序及其所得属性的机制进行分类。12,1024(2013)]。通常在新生的领域中,兴趣的突然上升伴随着多样化(有时是爆发)术语。尽管“类似铁电的”金属在理论上是正确确定的,即,在表现出金属电子传输的同时,经历对称性的过渡到极相的材料,但实际材料却发现了多种方法来推动这种定义的边界。在这里,我们从理论,模拟和实验的角度审查并探索了新兴的极地金属边界,同时引入了统一的分类学。该框架允许人们描述,识别和分类极性金属;我们还使用它来讨论“铁电”和“金属”一词固有的理论与现实模型之间的一些基本张力。此外,我们强调了静电掺杂模拟在建模极性金属的不同亚类中的缺点,并指出了这种方法的假设如何与实验不同。我们包括一项已知材料的调查,该调查将极性对称性与金属电导率结合在一起,并根据用于协调这两个顺序及其所得属性的机制进行分类。我们通过使用我们的分类法来描述发现新型极地金属的机会来得出结论。
经常导致创建由纯属金属或几层纯金属组成的涂料,另一种是纯金属,每种金属都有特殊目的。然而,合金沉积并不少见。用于印刷电路和Fe-Ni的PB-SN合金作为录音行业中的软磁铁,已用于长石灰[7,8]。最近,对微机械系统(MEMS)中用作硬磁体的PT-CO合金非常感兴趣[9,10]。与Ni或CO的W和RE合金的电镀也在近年来获得了高温或高耐磨性耐药性的兴趣[11,12]。比化学或物理蒸气沉积的方法(CVD和PVD)具有多种优势。其中包括低成本,低温施用,厚度的均匀性或成反比设计的nuni形式(即,仅在表面上的特定区域涂层)[13,14]。
kagome晶格是一个丰富的游乐场,用于研究基本物理和揭示物质的新阶段。Not only does this lattice display features such as flat bands, Van Hove singularities, Dirac points, Dirac cones, highly anisotropic Fermi surfaces, and Fermi surface nesting, but it also hosts a plethora of exotic phases, including frus- trated magnetism, quantum spin liquids, chiral spin states, and various topological phases.先前关于kagome晶格材料的研究包括在Ferromagnet Co 3 Sn 2 S 2 [1,2]中观察Weyl Fermions,在非连线性抗fiRomagnet Fe 3 Sn 2 [3 - 5]中的磁性Skymions,在抗FERMAGNETIC FESN [6]和PARMANTEN [6]和PARMANTIC 7的频带和DIRAC点[3-5],频带和DIRAC点。非共线性抗铁磁铁Mn 3 x(x = sn,ge)[9,10],并且在许多这些kagome系统中观察到大型异常霍尔效应[11]。最近,已经发现了新的Kagome晶格材料家族,例如具有较大的化学可调性并显示了一系列磁相[12,13]。另一个家庭NB 3 x 8(x = cl,br,i)具有三角扭曲的呼吸模式kagome晶格,该晶状体具有突出的孤立环,并被认为是可能的莫特绝缘子或阻塞的原子绝缘子[14]。另一个引起显着兴趣的家庭是AV 3 SB 5(A = K,CS,RB)系统(“ 135”化合物)。近年来这个家庭一直是一个热门话题,因为多个竞争阶段的观察到超导性,电荷和配对密度波,列表订购以及单个材料中的大型异常效应[15 - 35]。最近的发现发现,用铬代替钒会导致一种新的化合物CSCR 3 SB 5,该化合物表现出多个相,并在施加压力下变为超导[36,37]。这些复杂的对称破坏序状态为