这是以下文章的已接受版本:Pitchappa, P., Kumar, A., Liang, H., Prakash, S., Wang, N., Bettiol, A. A., ... Singh, Ranjan. Frequency‑agile temporary terahertz metamaterials. Advanced Optical Materials, 8(12), 2000101‑. doi:10.1002/adom.202000101,已在 10.1002/adom.202000101 以最终格式发布。本文可根据 Wiley 自存档政策 [https://authorservices.wiley.com/authorsresources/Journal‑Authors/licensing/self‑archiving.html] 用于非商业用途。
与光学工作并行,Engheta正在使用较低频率的原理设备来推动模拟计算机的数学能力。小组的最新结果添加了一个重要的新功能:重新配置性 - 方程求解器可以重新编程以执行不同数学的能力。该方案由5×5的射频(45-MHz)元素(例如放大器和相移)组成。可以通过控制每个元素的参数来重新配置该设备。作为演示,研究人员的机器解决了两个不同的问题:找到多项式系统的根并执行元结构的逆设计。这两个问题都是非组织的,也就是说,他们需要在每个步骤中具有不同数学操作的一系列步骤。
关键词:逆向设计、光学超材料、物理信息学习、深度学习 光学超表面由密集排列的单元组成,这些单元通过各种光限制和散射过程来操纵光。由于其独特的优势,例如高性能、小尺寸和易于与半导体器件集成,超表面在显示器、成像、传感和光学计算等领域引起了越来越多的关注。尽管在制造和特性方面取得了进展,但对于复杂的光学超材料系统来说,对合适的光学响应进行可行的设计预测仍然具有挑战性。随着设计复杂性的增加,获得最佳设计所需的计算成本呈指数增长。此外,由于逆问题通常是不适定的,因此设计预测具有挑战性。近年来,深度学习 (DL) 方法在逆向设计领域显示出巨大的前景。受此启发以及 DL 产生快速推理的能力,我们引入了一个物理信息 DL 框架来加快超表面逆向设计的计算。添加基于物理的约束可以提高 DL 模型的通用性,同时减少数据负担。我们的方法引入了一种串联深度学习架构和基于物理的学习,通过选择科学一致、设计预测误差低、光学响应重建准确的设计来缓解非唯一性问题。为了证明这一概念,我们专注于代表性等离子体装置的逆向设计,该装置由沉积在金属基板顶部的介电膜上的金属光栅组成。该装置的光学响应由几何尺寸和材料特性决定。训练和测试数据是通过严格耦合波分析 (RCWA) 获得的,而基于物理的约束则是通过求解简化均质模型的电磁 (EM) 波方程得出的。我们考虑对单个波长事件或可见光范围内波长光谱的光学响应进行设计预测。以可见光谱的光学响应作为输入,我们的模型对于逆向设计预测的收敛准确率高达 97%。该模型还能够以高达 96% 的准确度预测设计,对于单一波长的光的光学响应作为输入,光学响应重建准确度可达 99%。
在外部施加的载荷下,颗粒包装形成了力链网络,这些网络取决于晶粒的接触网络和刚度。在这项工作中,我们研究了可变刚度颗粒的包装,我们可以通过更改包装中各个颗粒的刚度来指导力链。每个可变刚度颗粒都是由硅胶壳制成的,该壳封装了由低熔点金属合金(田间金属)制成的芯。通过通过共同设置的铜加热器发送电流,可以通过焦耳加热熔化每个粒子内部的金属,从而导致颗粒的软化。随着粒子冷却至室温,合金凝固,粒子恢复了其原始刚度。为了优化包含软颗粒和刚性颗粒的颗粒包装的机械响应,我们采用了一种进化算法,结合了离散元素方法模拟,以预测将在组装边界上产生特定力输出的刚度模式。使用可变刚度颗粒的2D组件在实验中构建了预测的刚度模式,并使用光弹性测量了组装边界不同点处的力输出。此结果是制造机器人颗粒超材料的第一步,可以动态地调整其机械性能,例如力传输,弹性模量和按需频率响应。
“在局部傅里叶变换的维格纳表示中……可以有正值和负值,这会导致整个函数的傅里叶积分出现细微的抵消”
现有的大多数声学超材料依赖于具有固定配置的架构结构,因此,一旦结构制成,其属性就无法进行调制。新兴的主动声学超材料为按需切换属性状态提供了有希望的机会;然而,它们通常需要束缚负载,例如机械压缩或气动驱动。使用不受束缚的物理刺激来主动切换声学超材料的属性状态仍未得到很大程度上的探索。在这里,受鲨鱼皮小齿的启发,我们提出了一类主动声学超材料,其配置可以通过不受束缚的磁场按需切换,从而实现声学传输、波导、逻辑运算和互易性的主动切换。关键机制依赖于磁可变形米氏谐振器柱 (MRP) 阵列,这些阵列可以在垂直和弯曲状态之间调整,分别对应于声学禁止和传导。 MRP 由磁活性弹性体制成,具有波浪形空气通道,可在设计的频率范围内实现人工米氏共振。米氏共振会诱发声学带隙,当柱子被足够大的磁场选择性弯曲时,声学带隙会闭合。这些磁活性 MRP 还可用于设计刺激控制的可重构声学开关、逻辑门和二极管。本范例能够创建第一代不受束缚的刺激诱导的主动声学元设备,可能具有广泛的工程应用,包括从噪声控制和音频调制到声波伪装。
二维超材料作为元泡沫,用于优化表面增强太阳能蒸汽发电 Lan GAO 1 , Elyes NEFZAOUI 1 *, Frédéric MARTY 1 , Xuyong WEI 2 , Stéphane BASTIDE 3 , Yamin LEPRINCE-WANG 1 , Tarik BOUROUINA 1 * 1 ESYCOM lab., Univ Gustave Eiffel, CNRS, F-77454 Marne-la-Vallée, 法国 2 西安交通大学机械工程学院, 西安, 710049, 中国 3 ICMPE, UMR 7182 CNRS-Université Paris Est Créteil, F-94320 Thiais, 法国 *通讯作者: elyes.nefzaoui@esiee.fr ; tarik.bourouina@esiee.fr 我们报道了一种新型超材料,它由超泡沫组成,经过优化,可实现高
拓扑物理学彻底改变了材料科学,在从量子到光子系统和声音系统的不同环境中引入了物质的拓扑阶段。在此,我们提出了一个拓扑系统的家族,我们称其为“应变拓扑超材料”,其拓扑合适仅在高阶(应变)坐标转换下被隐藏和揭幕。我们首先表明,规范质量二聚体,该模型可以描述各种设置,例如电路和光学元件,等等属于该家族,在该家族中,应变坐标揭示了在自由边界处的边缘状态的拓扑非平地。随后,我们为主要支持的基塔夫链提供了一种机械类似物,该链支持拟议框架内的固定和自由边界的拓扑边缘状态。因此,我们的发现不仅扩展了拓扑边缘状态的识别方式,而且还促进了各种领域中新型的托托质材料的制造,具有更复杂的量身定制的边界。
摘要:本文介绍了可持续电磁超材料 (EM-MM),这是一种新型人造材料,具有自然界中无法找到的独特电磁特性。这些材料由离散的微观和纳米级物体制成,这些物体会产生共振,从而可以精确控制它们与电磁波的相互作用,从而产生前所未有的功能。因此,对 EM-MM 的可持续合成方法的需求已成为缓解与传统制造技术相关的资源数量的重中之重。可再生资源(如模仿自然图案的生物聚合物)是可持续使用生物基合成材料途径的例子。这可以通过制造增材制造策略来保证可持续性,尤其是 3D 打印创新,其中仅根据需要控制织物声明,从而减少浪费。通过所有这些回收和升级再造,为发展和降低成本提供了机会,同时减少了与可持续性相关的自然影响。电磁金属复合材料的应用已使多个领域受益,例如太阳能收集为可持续发电提供了潜力,成像使用具有出色分辨率和灵敏度的金属材料透镜,而在电信领域,金属材料天线可确保更成功地传输和接收信号。但是,电磁金属材料方面仍有几个问题需要解决。未来的方向包括研究结合新型电磁复合材料的计划,这些复合材料具有升级的质量和可持续的合成策略。技术的应用需要克服集成、韧性和成本效益等实际挑战,同时评估社会影响、财务和社会