摘要:本文介绍了世界商业周期的同步和领先综合月度指标——全球经济晴雨表。两者均以世界产出增长率周期为目标。这些指标的计算包括两个主要阶段。第一阶段包括变量选择程序,其中使用预设的相关阈值和参考序列的目标结果作为选择标准。在第二阶段,将选定的变量组合并转换为相应的综合指标,以参考序列作为响应变量,计算为第一个偏最小二乘因子。在本文提到的最后一个年份(2018 年 12 月),在第一阶段测试的 1681 个变量的 6605 个转换中,1275 个被选入同步指标,1228 个被选入领先综合指标。我们在伪实时设置中分析了这两个新指标的特征,并证明这两个指标都是迄今为止发布的全球商业周期少数指标的有用补充。
毫米级、大面积均匀半导体器件分层用于物理故障分析和质量控制 Pawel Nowakowski*、Mary Ray、Paul Fischione EA Fischione Instruments,Export,宾夕法尼亚州,美国* 通讯作者:p_nowakowski@fischione.com 不断发展的微电子设备设计越来越复杂、越来越紧凑和越来越小。这些设计可能包括越来越多的层、三维 (3D) 垂直堆叠、气隙和不同的材料成分。大批量半导体器件制造需要强大的质量控制和故障分析过程。过去几十年来,已经开发出了许多故障分析技术,包括非破坏性和破坏性技术 [1-3]。一种非常流行的技术是器件分层,即从上到下控制地去除器件层。通过这种技术获得的信息可以支持质量控制、故障分析工作、成品和工艺改进数据以及逆向工程。
摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
我们已审查了您根据第 510(k) 条提交的上述器械上市前意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据法案的一般控制规定销售该器械。虽然这封信将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不评估与合同责任担保相关的信息。但是,我们提醒您,设备标签必须真实,不得误导。
参考[1] Hou,Saihui等。“通过重新平衡来逐步学习统一的分类器。”CVPR2019。[3] Liu,Yaoyao,Bernt Schiele和Qianru Sun。“用于课堂学习学习的自适应聚合网络。”CVPR 2021。[4]刘,Yaoyao,Bernt Schiele和Qianru Sun。“ RMM:用于课堂学习学习的增强记忆管理。”神经2021。[5] Rebuffi,Sylvestre-Alvise等。“ icarl:增量分类器和表示学习。”CVPR2017。[6] Li,Zhizhong和Derek Hoiem。“学习而不会忘记。”TPAMI2017。
v3 具有全面的测试程序:台式和测试光束、辐照、NASA 有效载荷任务(A-STEP)的四芯片读数、与 ePIC 的 Pb/SciFi 集成(研发研究和测试文章生产)
摘要 - 本文使用传输矩阵方法对分布式反馈(DFB)腔模型进行了深入研究,以优化光子应用中的光学性能。分析了各种参数,包括有效的折射率,光栅长度和空腔长度,以观察它们对DFB腔的反射率和透射率的影响。数值模拟,以建模光与腔内周期性变化的相互作用。结果显示最佳配置,可以增强DFB腔中的波长选择性。这项研究有助于设计有效的光子设备,特别是在激光器和光学滤镜中。模拟为指导高性能DFB激光器的发展提供了重要的见解。
本演讲仅出于信息目的而提供,不应以代表新泽西州公用事业委员会,其专员或新泽西州的意见。,如果新泽西州法规,规则或政策发生更改,请注意,提供的任何信息可能会更改。
