发展了一种通过测量近火星空间中氢能中性原子(H-ENA)反演太阳风参数的算法。假设H-ENA是由太阳风中的质子与外大气层中性子发生交换碰撞而产生的,在磁流体力学(MHD)模拟太阳风与火星相互作用的基础上,建立了H-ENA模型,研究了H-ENA的特性。结果表明,太阳风H-ENA与太阳风一样,是高速、低温的粒子束,而磁鞘H-ENA速度较慢、温度较高,能量分布较广。假设太阳风H-ENA通量服从麦克斯韦速度分布,高斯函数最适合拟合太阳风H-ENA通量,由此可以反演太阳风的速度、密度和温度。进一步基于H-ENA模型模拟的ENA通量研究表明,反演太阳风参数的精度与ENA探测器的角度和能量分辨率有关。最后,利用天问一号任务的H-ENA观测数据验证了该算法。反演后的上游太阳风速度与原位等离子体测量结果接近。我们的结果表明,从H-ENA观测数据反演的太阳风参数可以作为火星空间环境研究数据集的重要补充,因为火星空间环境研究缺乏对上游SW条件的长期连续监测。
由量子噪声造成的一般量子统一操作员被复制并插入一个相干超级式通道中,超过两个路径在嘈杂的单位上跨越探测器,并由控制量子驱动。对探针控制量子对的关节状态上的超塑通道进行的转换实现进行了表征。然后对超座通道进行特定分析,以分析嘈杂单一的相位估计的基本计量学任务,并由Fisher信息,经典或Quanth评估。与常规估计技术进行了比较,并通过最近研究了具有无限因果关系的量子切换通道,该通道最近研究了相似的相位估计任务。在此处的分析中,第一个重要的观察结果是,尽管它从未直接与估计的单一估计的单一相互作用,但可以单独测量它以进行有效的估计,同时丢弃与单一相互作用的探针Qubit。此属性也带有开关通道,但不可访问的技术无法访问。在一般条件下,此处表征了控制量子标筒的最佳测量。第二个重要的观察结果是,噪声在将控制矩偶联到单位的耦合中起着至关重要的作用,并且即使使用完全去极化的噪声,控制量矩形在非常强的噪声下仍可以进行相位估计的操作,而常规估计和切换通道在这些条件下也不正常。结果扩展了对相干控制通道的能力的分析,该通道代表可利用量子信号和信息处理的新设备。
了解颗粒在空气界面上的运动可能会影响广泛的科学领域和应用。diamagnetic颗粒在空气 - 磁流体界面上流动,是磁体的排斥运动。在这里,我们显示了一种运动机制,其中吸引了空气 - 磁流体界面上的磁磁颗粒,并最终被困在距磁铁偏低的距离处。还已经研究了磁性颗粒的行为,并在一个统一的框架中对运动机制进行了理论,表明颗粒在空气 - 磁磁性 - 液体界面上的运动不仅受磁能的控制,而且是由液体磁性磁性远程绘制的磁性构成的曲率相互作用,并且是液体磁性磁性的磁性磁性磁性的磁性磁性,且磁性磁性的磁性。有吸引力的运动机制已应用于定向的自组装和机器人粒子引导中。
电池建模的中心步骤是识别模型参数。但是,参数的确定是时间耗尽,通常是次优的。强化学习提供了一种有希望的替代方案,其中代理通过交互和目标奖励来学习最佳参数。本学士学位论文的目标是对基于RL的参数确定的全面搜索和一个简单示例的实际实现。
大气中子辐照谱仪(ANIS)是中国散裂中子源(CSNS)的一条新光束线,主要用于现代微电子的加速测试。它具有类似大气的中子谱,具有准直束斑和泛光束斑。ANIS 总长 40 米,配备中子快门、飞行管、中子扩展器、通量控制器、准直器、清除磁铁、中子滤波器以及光束线屏蔽。ANIS 后端设有控制室、操作室和储藏室。设计、组装、检查测试和初始调试测试于 2022 年成功完成。ANIS 目前处于科学调试的高级阶段,用于测量不同配置下的中子谱、通量和剖面。使用裂变电离室 (FIC)、位置灵敏气体电子倍增器 (GEM)、活化箔和单晶金刚石探测器测量了中子束特性。在这项工作中,我们介绍了 ANIS 的测量光束规格和光束评估,这对于即将启动的 ANIS 用户计划很有希望。还介绍了早期操作和用户实验。
1 瑞士西北应用科学与艺术大学 FHNW 工程学院,Bahnhofstrasse 6, 5210 Windisch, Switzerland; andrea.battaglia@fhnw.ch (AFB); muriel.stiefel@fhnw.ch (MZS) 2 欧洲空间研究与技术中心 (ESTEC),欧洲空间局,2201 Noordwijk,荷兰 3 Mullard 空间科学实验室,伦敦大学学院,Holmbury St. Mary,Dorking RH5 6NT,英国 4 加州大学伯克利分校空间科学实验室,7 Gauss Way,伯克利,CA 94708,美国 5 粒子物理和天体物理研究所 (IPA),瑞士苏黎世联邦理工学院 (ETHZ),Wolfgang-Pauli-Strasse 27,8039 苏黎世,瑞士 6 天体粒子与宇宙学,巴黎城大学,CNRS,CEA,F-75013 巴黎,法国 7 美国国家航空航天局戈达德太空飞行中心,8800 Greenbelt Road,Greenbelt,MD 20771,美国; albert.y.shih@nasa.gov (AYS) 8 波茨坦莱布尼兹天体物理学研究所 (AIP), An der Sternwarte 16, 14482 Potsdam, 德国; awarmuth@aip.de (AW); mverma@aip.de (MV) 9 格拉茨大学物理研究所和 Kanzelhöhe 天文台,Universitätsplatz 5, 8010 Graz, Austria 10 都柏林高等研究院,31 Fitzwilliam Place, Dublin D02 XF86,爱尔兰; peter.gallagher@dias.ie (PTG) 11 格拉斯哥大学物理与天文学院,University Avenue, Glasgow G12 8QQ,UK; iain.hannah@glasgow.ac.uk (IH) 12 诺森比亚大学数学、物理和电气工程系,泰恩河畔纽卡斯尔 NE1 8S,英国 13 捷克科学院天文研究所 (CAS),251 65 Ondˇrejov,捷克共和国; jana.kasparova@asu.cas.cz 14 西肯塔基大学物理与天文学系,Bowling Green, KY 42101,美国 15 图像和数据分析方法 (MIDA),Dipartimento di Matematica,Università di Genova,Via Dodecaneso 35,I-16146 Genova,意大利; piana@dima.unige.it (MP) 16 Centrum Bada´n Kosmicznych, PAN, ul. Bartycka 18a, 00-716 华沙, 波兰; tmrozek@cbk.pan.wroc.pl (TM) 17 Istituto Nazionale di Fisica Nucleare (INFN-Pisa), 56127 Pisa, Italy 18 Institut de Recherche en Astrophysical et Planétologie (IRAP), National Center for Space Studies (CNES), Université Toulouse III, 31062 Toulouse, France 19 物理学加州大学圣克鲁斯分校,1156 High St.,Santa Cruz,CA 95064,USA 20 圣克鲁斯粒子物理研究所,加州大学圣克鲁斯分校,Santa Cruz,1156 High St.,Santa Cruz,CA 95064,USA 21 空间研究和天体物理仪器实验室 (LESIA),CNRS-UMR 8109,Observatoire de Paris,5 Place J.扬森, 92195 默东, 法国; nicole.vilmer@obspm.fr * 通讯地址:daniel.ryan@fhnw.ch
摘要 - 在这项工作中,我们研究了最短矢量问题(SVP)在学习错误问题(LWES)方面产生的最短媒介问题(SVP)。lwes是模块环上方程式的线性系统,其中将扰动向量添加到右侧。这种类型的问题引起了人们的极大兴趣,因为必须解决LWES,以便能够破坏基于晶格的密码系统作为NIST在2024年发表的基于模块的键盘封装机制。由于这一事实,已经研究了几种基于经典和量子的算法来求解SVP。可用于简化给定SVP的两种著名算法是Lenstra-Lenstra-Lov´asz(LLL)算法和块Korkine-Zolotarev(bkz)算法。LLL和BKZ构造碱基可用于计算SVP的解决方案或近似解决方案。我们研究具有不同尺寸和模块化环的SVP的两种算法的性能。因此,如果LLL或BKZ在给定的SVP中的应用被认为是成功的,那么它们会产生包含SVP的溶液向量的碱基。
摘要。小行星影响与挠度评估(AIDA)是NASA DART任务与ESA HERA任务之间的合作。目的范围是通过动力学碰撞研究小行星挠度。DART航天器将与Didymos-B碰撞,而地面站监视轨道变化。HERA航天器将研究影响后情况。HERA航天器由主航天器和两个小立方体组成。HERA将通过摄像头,雷达,卫星到卫星多普勒跟踪,LIDAR,地震测定法和重力法监测小行星。在本文中报道了LIDAR工程模型高度计Helena上的第一次迭代。Helena是一个TOF高度计,可提供时间标记的距离和速度测量值。LIDAR可用于在小行星导航附近的支持,并提供科学信息。Helena设计包括一个微芯片激光和低噪声传感器。这两种技术之间的协同作用使得可以开发一种紧凑的仪器,以达到14公里的范围测量。热力学和辐射模拟。该设计受到振动,静态和热条件的影响,并且可以通过结果结论,望远镜符合随机振动水平,静态负载和工作温度。
QIAamp DNA Blood Midi 程序可产生可直接进行限制性消化或扩增的纯 DNA。使用合适的离心机转子,大约 1.5 小时内可同时制备八个样本,手动操作时间约为 30 分钟。QIAamp DNA Blood Midi 试剂盒适用于用 EDTA、柠檬酸盐或肝素处理的全血,样本可以是新鲜或冷冻的。无需分离白细胞。该程序不需要苯酚/氯仿提取或酒精沉淀,只需极少的操作。DNA 在缓冲液 AE 或水中洗脱,可直接加入 PCR 或其他酶促反应,也可以安全地储存在 –30 至 –15°C 下以备后用。纯化的 DNA 几乎不含蛋白质、核酸酶和其他污染物或下游应用的抑制剂。DNA 的大小范围高达 50 kb,主要为约 30 kb 的片段。
气候模型表明,气候反馈参数λ表示地球辐射响应对全球表面温度变化的大小随时间而变化。这是因为λ取决于海面温度的模式。然而,在多年观测中尚未评估λ的时间变异及其与海面温度模式的关系。在这里,使用最新的观察,我们评估了连续的25年窗户的全球能源预算,并在1970年至2005年间得出了λ的时间序列。我们发现λ在[ - 3.2,−1.0] w·m -2·k -1以来自1970年以来变化。这些变化与与PACIFID腐蚀振荡相关的海面温度模式变化有关。对历史海面温度的观测强迫的气候模型模拟显示了与观察结果一致的1970 - 2005年平均λ。然而,它们未能再现自1970年以来观察到的λ时间变化,这与Pacififfif-decadal振荡相关,这意味着气候模型低估了在十年时间尺度上的模式效应。