识别导致神经遗传疾病的 DNA 变异的主要瓶颈是 VUS 的功能分析。本研究的目的是通过在 NPC 和斑马鱼中使用 CRISPR/Cas9 基因组编辑来开发一种方法,以对在巨脑回患者中观察到的候选致病变异进行建模。通过 aCGH 和 WES 分析了 20 名巨脑回/无脑回患者的 DNA,并确定了变异的优先级。通过使用 CRISPR/Cas9 基因组编辑在 NPC 和斑马鱼中生成突变系,并与已知在巨脑回/无脑回中发挥作用的三个关键基因(TUBG1、LIS1、DAB1)之一的模型进行了比较。使用 3D 基质胶腔系统 (ICChip) 对 NPC 进行表征,并在 3 dpf 和 5 dpf 时观察到发育中的斑马鱼的表型变化。使用 qPCR 对目标突变系和选定的变体系进行了比较。与对照组相比,在 3 个选定基因的突变 NPC 系中观察到迁移延迟。WES 确定了两个候选变体,CGREF1 和 NOL9。观察到 CGREF1KO 斑马鱼和 CGREF1KONPC 中无脑畸形和小头畸形相关基因和神经元分化基因的表达变化。在 Tubg1 突变斑马鱼中观察到严重的表型,包括小头和小眼,以及肝脏/肠道发育异常。我们的研究结果证明,使用 NPC 和斑马鱼模型可以以省时省钱的方式测试导致与 NPC 迁移相关的缺陷的变异。多组学分析可以进一步将这种方法的使用范围扩展到其他神经遗传缺陷组。该项目由 TUBITAKCOST Action 资助,代码号为 217S944。
甘蔗是世界上最重要的糖和能源作物。在甘蔗育种期间,技术是需求,方法是手段。我们知道,种子是甘蔗产业发展的基石。Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses.Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic生物学,结合遥感和深度学习等信息技术。鉴于此,我们从技术和方法的角度专注于甘蔗育种,回顾了主要历史,指出了当前的状态和挑战,并为智能育种前景提供了合理的前景。
•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
ICAN Ocean Pout链球菌Americus Fishery colaps collaps collaps collaps a s laps the造成的sporidian pleistophora acrozrozoarcides(Fischthal 1944年,Sandholzer等,1945,Sheehy等。 1974)。 彩虹窒息的Osmerus Mordax渔业的崩溃部分归因于Glugea Hertwigi的感染(Haley 1954)。 余生感染会降低生长,厌食症(Matthews&Matthews 1980,Figueras等人。 1992),《游泳能力障碍》(Sprengel&Lüchtenberg,1991年),降低了生殖成功(Summerfelt 1964,Wiklund等人 1996)和肌肉组织的液化(Nigrelli 1946,Grabda 1978,Egidius&Soleim 1986,Pulsford&Matthews 1991)。 glugea属,核孢菌,洛马和pleistophora的成员对农场饲养的鱼也有重大影响(Chilmonczyk等人。 1991,肖和1945,Sheehy等。1974)。彩虹窒息的Osmerus Mordax渔业的崩溃部分归因于Glugea Hertwigi的感染(Haley 1954)。余生感染会降低生长,厌食症(Matthews&Matthews 1980,Figueras等人。1992),《游泳能力障碍》(Sprengel&Lüchtenberg,1991年),降低了生殖成功(Summerfelt 1964,Wiklund等人1996)和肌肉组织的液化(Nigrelli 1946,Grabda 1978,Egidius&Soleim 1986,Pulsford&Matthews 1991)。glugea属,核孢菌,洛马和pleistophora的成员对农场饲养的鱼也有重大影响(Chilmonczyk等人。1991,肖和
摘要。研究相关性是由在难以到达条件下改善对象大小的测量过程的需要决定的。在现代工业环境中,高测量精度对于确保安全和最大化生产过程的效率至关重要,对该主题的研究在快速技术发展和提高生产质量要求的背景下是相关的。该研究旨在评估使用现代计算机视觉方法在困难的技术条件下测量和重建对象的可能性,例如水 - 水功率反应堆的封闭。该研究采用了3D摄影测量方法,包括立体声和多视图立体声的深度,以及运动方法的结构。研究确定,现代计算机视觉方法,特别是机器学习方法,可以成功地用于在难以到达的条件下测量和重建对象。研究表明,在理想条件下,从测量设备到对象的测量精度可以达到接近1 mm的值。同时,与立体声方法的深度相比,多视图立体法揭示了误差的空间分布更大的均匀性。在实践中,在真实照片的条件下,多视图立体声方法最需要准确地确定相机的位置。由于其对摄像机确切坐标的需求较低,立体声方法的深度显示出更好的结果,显示出较小的测量误差。这项研究强调了使用所提出的方法区分
科学监测是科学建议的基本基础。除其他外,监测旨在有助于理解人为使用的影响(例如fineries),股票的健康,个人和保护和保护措施的有效性(例如,mpas)。监测对底栖鱼类和底栖鱼类社区的监测通常是基于诸如底部拖网(Tostal Trawing)之类的侵入性方法,但是在某些情况下,侵入性方法可能较少。需要越来越多的海洋保护区和风力,在这种情况下,由于保守或技术和安全原因无法部署诸如拖网等传统方法,因此支持了越来越多的侵入性监测方法。为了支持新的监测概念的发展,我们进行了文献综述,以确定已经可用的方法的限制和机会。此外,我们提出了一个目的指南,可以帮助确定用于个人目的的适当方法。我们定义了使用四个不同标准分析的八种不同方法,并列出了它们的优势和缺点。我们将本指南进一步应用于波罗的海海洋保护区的监测,这表明除了传统的底部拖网,替代性和侵入性较低的方法外,还可以针对特定的研究目的。因此,我们鼓励科学家和经理考虑替代数据收集方法,以最大程度地减少科学抽样的环境影响。但是,我们的结果还表明,大多数方法仍然需要进一步的修改,尤其是在采样设计,方法的标准化以及与既定的调查方法的可比性方面。
UAV图像采集和深度学习技术已被广泛用于水文监测中,以满足数据量需求不断提高和质量的增加。但是,手动参数培训需要反复试验成本(T&E),现有的自动培训适应简单的数据集和网络结构,这在非结构化环境中是低实用性的,例如干山谷环境(DTV)。因此,这项研究合并了转移学习(MTPI,最大转移电位指数法)和RL(MTSA强化学习,多汤普森采样算法)在数据集自动启动和网络中自动培训,以降低人类的经验和T&E。首先,为了最大程度地提高迭代速度并最大程度地减少数据集消耗,使用改进的MTPI方法得出了最佳的迭代条件(MTPI条件),这表明随后的迭代仅需要2.30%的数据集和6.31%的时间成本。然后,在MTPI条件(MTSA-MTPI)中提高了MTSA至自动提高数据集,结果显示准确性(人为误差)提高了16.0%,标准误差降低了20.9%(T&E成本)。最后,MTPI-MTSA用于四个自动训练的网络(例如FCN,SEG-NET,U-NET和SEG-RES-NET 50),并表明最佳的SEG-RES-NET 50获得了95.2%WPA(准确性)和90.9%的WIOU。本研究为复杂的植被信息收集提供了一种有效的自动培训方法,该方法提供了减少深度学习的手动干预的参考。
摘要DNA甲基化对仓鼠腺嘌呤磷酸蛋白酶基转移酶(APRT)和疱疹胸苷激酶(TK)基因的跨遗传活性的影响。通过使用包含这些基因序列的M13构建体,使用限制性片段启动引物第二链合成在体外甲基化的特定段使用底物2'-脱氧-5-甲基-5-甲基 - 胞迪三丁烷三磷酸(DMCTP)。通过DNA-MEDI-ETED共转移将这些杂交甲基化分子插入小鼠LTK细胞中。在所有情况下,整合序列都保留了体外定向的甲基化模式。在5'区域中CpG甲基化抑制了APRT基因,但在3'端或相邻的M13序列中未能通过甲基化来进行。与此相反,在5'启动子区域和TK基因的3'结构区域中的DNA甲基化都具有很强的抑制作用。这表明这种修饰可能会通过不涉及RNA聚体识别序列直接改变的机制影响转录。