图 1. 2021 年纽约州裸眼井和封堵井数量 ...................................................................... 3 图 2. 纽约州每年完工的石油和天然气井数量 .............................................................. 4 图 3. 2021 年产气井的年龄分布 ...................................................................................... 5 图 4. 纽约州的石油和天然气产量 ...................................................................................... 6 图 5. 2021 年累计石油和天然气总产量百分比与纽约州油井数量之间的关系 ............................................................................. 7 图 6. 2021 年纽约州石油和天然气井位置和产量 ............................................................................. 8 图 7. 纽约州及周边各州的石油和天然气井、天然气加工厂、天然气管道、天然气地下储存和页岩气田位置 ................................................................................................................ 9 图 8. 纽约州天然气公用事业服务区 ............................................................................................. 10 图 9. 石油和天然气系统图 10. 确定天然气系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................27 图 11. 确定石油系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................28 图 12. 1990 年至 2021 年纽约州的 CH 4 总排放量(AR5 GWP 20)....................................................................................................................108 图 13. 1990 年至 2021 年纽约州的上游 CH 4 排放量(AR5 GWP 20)....................................................................................................108 图 14. 1990 年至 2021 年纽约州的中游 CH 4 排放量(AR5 GWP 20)....................................................................................................................109图 16. 2021 年下游、中游和上游 CH4 排放量占总排放量的百分比 ............................................................................................................. 111 图 17. 2021 年纽约州按来源类别并按上游、中游和下游阶段分组的 CH4 排放量(AR5 GWP 20) ............................................................................................. 112 图 18. 前五大排放源类别中 CH4 排放量的百分比 ............................................................................................. 113 图 19. 2021 年纽约州各县 CH4 排放量地图(AR5 GWP 20) ............................................................................................. 124 图 21. 帝国大厦发展公司确定的纽约州经济区域.... 131 图 22.2021 年纽约州各经济区域的 CH 4 排放量(AR5 GWP 20) ...... 132 图 23. 使用 AR5 GWP 20 CH 4 换算因子比较 1990 年和 2021 年纽约州源类别 CH 4 排放量 ................................................................................................................................ 134 图 24. 图 ES-11 的复制品(EPA 2023),显示能源和其他部门排放的时间序列趋势 ................................................................................................................................ 135 图 25. 包括最佳估计值和上下限的总排放量(AR5 GWP 20) ................................................................................................................................................ 141 图 26. 包括上限和下限的上游排放量(AR5 GWP 20) ............................................................................................................................................. 142 图 28. 包括上限和下限的下游排放(AR5 GWP 20)...................................................................................................... 142
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
在整个食品价值链中,从农场到零售,采购乳制品、牛肉和猪肉的公司面临着不同程度的甲烷相关气候风险,这取决于公司提供的产品。对于金融机构而言,了解哪些食品公司面临的甲烷暴露程度最高,对于管理气候风险至关重要。下一节将概述食品行业格局,揭示该行业中哪些子行业在其供应链中存在严重的牲畜甲烷暴露。(参见第10页的图表。)投资者和贷款机构可以利用这些洞察,更好地识别优先投资公司,并利用合作机会。包装食品和肉类包装食品和肉类公司面临的甲烷排放风险各不相同,具体取决于其生产产品的多样性。
Erin Hassett 1,Gil Bohrer 2,Lauren Kinsman-Costello 3,Yvette Onyango 2,Talia Pope 3,Chelsea 3 Smith 3,Justine Missik 2,Erin Eberhard 3,Jorge Villa 4,Jorge Villa 4,Steven E. McMurray 5,Tim Morin 1,Tim Morin 1 4 5 >
图 1. 2020 年纽约州裸眼井和封堵井数量 ...................................................................... 3 图 2. 纽约州每年完工的石油和天然气井数量 .............................................................. 4 图 3. 2020 年产气井的年龄分布 ...................................................................................... 5 图 4. 纽约州的石油和天然气产量 ...................................................................................... 6 图 5. 2020 年累计石油和天然气总产量百分比与纽约州油井数量之间的关系 ............................................................................. 7 图 6. 2020 年纽约州石油和天然气井位置和产量 ............................................................................. 8 图 7. 纽约州及周边各州石油和天然气井、天然气加工厂、天然气管道、天然气地下储存和页岩气田的位置 ................................................................................................................ 9 图 8. 纽约州天然气公用事业服务区 ............................................................................................. 10 图 9. 石油和天然气系统图 10. 确定天然气系统逸散性 CH 4 排放估算方法的决策树 ......................................................................................................................27 图 11. 确定石油系统逸散性 CH 4 排放估算方法的决策树 ......................................................................................................................28 图 12. 1990 年至 2020 年纽约州的 CH 4 总排放量(AR5 GWP 20) .............................................................................................................图 16. 2020 年纽约州下游、中游和上游 CH4 排放量占总排放量的百分比 ...................................................................................................................... 102 图 17. 2020 年纽约州按来源类别并按上游、中游和下游阶段分组的 CH4 排放量 (AR5 GWP 20) ............................................................................................. 103 图 18. 前五大排放源类别中 CH4 排放量的百分比 ............................................................................................. 104 图 19. 2020 年纽约州各县 CH4 排放量地图 (AR5 GWP 20) ............................................................................................. 113 图 20. 2020 年纽约州各县 CH4 排放量 (AR5 GWP 20) ............................................................................................. 114帝国大厦发展公司确定的纽约州经济区域.... 121 图 22. 2020 年纽约州各经济区域的 CH 4 排放量(AR5 GWP 20)...... 122 图 23.使用 AR5 GWP 20 甲烷换算因子,比较 1990 年和 2020 年纽约州源类别甲烷排放量 ...................................................................................................... 124 图 24. (EPA 2022) 中的图 ES-11 的复制,显示能源和其他部门排放的时间序列趋势 ................................................................................................................ 125 图 25. 包括最佳估计值和上限和下限的总排放量 (AR5 GWP 20 ) ............................................................................................................................. 131 图 26. 包括上限和下限的上游排放量 (AR5 GWP 20 ) ............................................................................................................................. 131 图 27. 包括上限和下限的中游排放量 (AR5 GWP 20 ) ............................................................................................................. 131 图 28. 包括上限和下限的下游排放量 (AR5 GWP 20 ) ............................................................................................................. 132
高能密度材料(HEDM)在许多地区都有很大的重要性,包括储能,火箭推进剂和炸药。多氮材料一直是有希望的HEDM候选物,因为由单键和三键组成的结构之间存在较大的能量差[1]。由于硅藻n 2分子是采用最稳定的n n三键[2]的最稳定形式[2],因此,当与单键键合构成n 2时,将释放大量能量。高压已被验证为打破极强三重N键并获得N-N键的聚合物氮材料[3]的有效方法。由于实验中的合成聚合物氮很难,因此在高压下的第一个原理计算研究,尤其是与自动crystal结构搜索算法相结合的,带来了相当大的成功。Following the first-principles prediction of single- bonded covalent solids with three-coordinated nitrogen atoms proposed by McMahan and Lesar [ 4 ], many other theoretical predictions of monatomic structures were studied, such as the cubic gauche (cg) [ 5 ], black phosphorus, α -arsenic [ 6 , 7 ], Cmcm chain [ 8 ], N 2 -N 6 [8],顺式传播链[9],分层船[10],八成员环[11],poly-n [12],层次PBA 2(LP)[13],螺旋隧道P 2 1 2 1 2 1 2 1结构[13,14]和笼子 - 像钻石的氮[15]。在实验上,CG结构的单键框架已在高压(110 GPA)和高温(2000 K)下成功合成[3,16]。最近,观察到分层的PBA 2结构
•模型的传播对于臭氧峰值而言比年平均水平更为重要,强调了对多模型方法的需求•整体结论正在融合:从全球模型中获得的年度平均值可能适用于A. Colette的臭氧峰会结果,如20.04.2023,to to to to https://policy.atmosphere.copernicus.eu/reports/cams2_71_2021sc1sc1-1_d4.1.1.1-2022p2_aqprojections_202211_v1.v1.1.1.pdf
国际行动:新西兰Aotearoa致力于与他人合作,以支持更大,更快的全球排放减少。国际气候变化倡议旨在减少新西兰Aotearoa涉及的甲烷排放,在第三节中概述了表1(第9-11页)。国内行动:新西兰Aotearoa已设定了减少排放的目标。到2030年,我们旨在将生物学排放量降低10%以下,并将净排放量低于2005年总水平50%。 到2050年,我们旨在将生物甲烷排放量降低24%至47%以下,并实现所有其他温室气体的净零排放。 Aotearoa新西兰采取的行动为实现这些目标所采取的措施在第三节中概述了表2(第14-17页)。到2030年,我们旨在将生物学排放量降低10%以下,并将净排放量低于2005年总水平50%。到2050年,我们旨在将生物甲烷排放量降低24%至47%以下,并实现所有其他温室气体的净零排放。Aotearoa新西兰采取的行动为实现这些目标所采取的措施在第三节中概述了表2(第14-17页)。
我们的研究重点是使用半刚性的静态室来表征茎Ch 4通量,并通过在两个森林湿地生态系统中富含加油的孵化来评估CH 4氧化和生产活动:在弗洛蒂克·莫尔(英国)的温带湿地(英国)的温带湿地,并在sebangau forest see the sebangau prosection(kalangau sefters)(kalgangau sefters)(kalimimiakia)较低(kalimimia)(kalimimia)(kalimimia)较低(kalimimia)( 时期。以多个高度间隔测量了靶向的树种,并在Sebangau森林中的Flitwick Moor和Shorea Balangeran和Shorea Balangeran和Shorea Balangeran和Xylopia fusca中进行了Alnus谷胱甘肽和Betula pubescens测量。来自树皮,木材和土壤的DNA分析涉及两个步骤PCR和针对16S rRNA基因的测序,并补充了整个shot弹枪宏基因组学(WGS),以探索微生物组成和CH 4循环微生物。
摘要。甲烷排放的现场水平测量值由操作员与自下而上的散布清单进行对帐,以提高所报告排放的准确性,彻底和确定。在这种情况下,至关重要的是避免测量错误并了解测量不确定性。遥远的飞机系统(通常称为“无人机”)可以在现场级甲烷排放的量化中起关键作用。典型的实现使用“质量平衡方法”来量化排放,高精度甲烷传感器以垂直窗帘模式安装在四极管无人机上。然后可以根据测量的甲烷浓度数据和同时的风数据在事后计算总质量排放率。受控释放测试表明,使用质量平衡方法的错误可能是相当大的。例如,Liu等。(2024)报告了测试的两个无人机解决方案的绝对错误超过100%;另一方面,如果在数据上放置了其他约束,则误差可能会小得多,在Corbett和Smith(2022)中的根平方错误的顺序,将分析限制在风场稳定的情况下。在本文中,我们提出了对物理现象的系统误差分析,该分析影响了与甲烷浓度数据获取和后处理有关的参数质量平衡方法中的误差。这些来源的示例包括单独分析了词的来源,并且必须意识到,实践中可以积累单个错误,并且也可以由未包含在本工作中的其他来源增加它们。