抽象目的总颅内体积(TIV)通常是基于MRI的脑容量的滋扰。这项研究比较了两种TIV调整方法在区域大脑体积估计的单个受试者分析中对Z分数的影响。在包含5059 T1W图像的正常数据库中分割了脑脑实质,海马,丘脑和TIV的方法。使用剩余方法或比例方法调整了TIV的区域体积估计值。年龄。TIV和年龄调整后的区域体积转化为Z分数,然后在两种调整方法之间进行比较。在127例多发性硬化症患者中测试了它们对丘脑萎缩检测的影响。结果剩余方法在所有地区删除了与TIV的关联。比例方法导致了方向的转换,而没有相关的关联强度变化。使用剩余方法的生理学间变异性的降低比使用比例方法更大。用残差方法与比例方法获得的z得分之间的差异与TIV密切相关。在5%的受试者中,它大于一个z得分点。用剩余方法比使用比例方法(0.84对0.79),鉴定多发性硬化症患者的TIV和年龄调整后的丘脑体积的ROC曲线下的面积更大。结论在单个受试者分析中,应首选剩余方法进行TIV和基于T1W-MRI的大脑体积估计的年龄调整。
•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
1简介1 2背景2 2.1什么是外泌体?2 2.2 Exosome structure and interaction 4 2.3 Application of exosomes 6 2.4 Isolation of exosomes 7 2.5 Quality control measures 8 2.6 The focus of this report 8 3 Non-chromatography methods for exosome purification 9 3.1 Ultracentrifugation 9 3.1.1 Advantages and disadvantages of ultracentrifugation 10 3.2 Ultrafiltration 10 3.2.1 Advantages and disadvantages of ultrafiltration 11 3.3 The principle of immunoaffinity 11 3.3.1 Advantages and disadvantages of immunoaffinity 11 3.4 Precipitation 12 3.4.1 Advantages and disadvantages of precipitation 12 3.5 Scalability of UC, UF and precipitation 13 4 Exosome purification using agarose chromatography techniques 14 4.1 Purification of exosomes based on size 16 4.1.1 Size-exclusion chromatography (SEC) 16 4.1.1.1 sec在EV和外部组中研究16 4.1.1.2使用SEC 17 4.1.1.3隔离EV的交联的Sepharose树脂,用于外部和EV-溶解的预包装的SEC柱18 4.1.1.4
精确农业涉及使用实时信息来增强对资源的有效利用和对农业方法的监督,同时却最大程度地减少了不利的环境影响。多亏了遥感技术的进步,现在在农业部门中生产了大量的大数据。当使用机器和深度学习技术进行分析时,该数据需要转换为有价值的信息,已证明是有益的。这个研究主题“大数据,机器和深度学习的最新进展”吸引了20种高质量的文章,这些文章涵盖了现状的应用以及人工智能,大数据,特征优化,作物疾病检测和分类的精确农业的技术发展。在不断发展的农业景观中,三个关键主题已成为变革性变革的信标。本社论探讨了塑造农业未来的创新领域,重点是三个相互联系的主题:植物疾病检测和作物健康监测的进步,在精确农业中的人工智能(AI)和机器学习(ML)的整合以及用于作品生产优化的方法。在农业科学领域,由于开创性的研究努力,植物疾病检测和作物健康监测的动态景观已经取得了重大进展。Shoaib等。解决噬菌毒全球问题通过强调机器学习技术的关键作用来面对手动监测植物疾病的持续挑战。他们的工作提出了一个基于深度学习的系统,利用了在一个大量数据集中训练的卷积神经网络(Inception Net),其中包括18,161个细分和非细分的番茄叶图像。值得注意的是使用两个最先进的语义分割模型U-NET和修改的U-NET进行疾病检测和分割。结果展示了修改后的U-Net模型的出色性能,超过现有方法,并以高精度对植物疾病进行分类时的效率。
背景和目标:由于失去随访的患者的数量,纵向研究中缺少数据是一个无处不在的问题。内核方法通过成功管理非矢量预测因子(例如图形,字符串和概率分布)来丰富机器学习场,并成为分析由现代医疗保健诱导的复杂数据的有希望的工具。此pa-提出了一组新的内核方法,以处理响应变量中缺少的数据。这些方法将用于预测糖化血红蛋白(A1C)的长期变化,这是用于诊断和监测糖尿病进展的主要生物标志物,以探索探索连续葡萄糖(CGM)的预测潜力。
UAV图像采集和深度学习技术已被广泛用于水文监测中,以满足数据量需求不断提高和质量的增加。但是,手动参数培训需要反复试验成本(T&E),现有的自动培训适应简单的数据集和网络结构,这在非结构化环境中是低实用性的,例如干山谷环境(DTV)。因此,这项研究合并了转移学习(MTPI,最大转移电位指数法)和RL(MTSA强化学习,多汤普森采样算法)在数据集自动启动和网络中自动培训,以降低人类的经验和T&E。首先,为了最大程度地提高迭代速度并最大程度地减少数据集消耗,使用改进的MTPI方法得出了最佳的迭代条件(MTPI条件),这表明随后的迭代仅需要2.30%的数据集和6.31%的时间成本。然后,在MTPI条件(MTSA-MTPI)中提高了MTSA至自动提高数据集,结果显示准确性(人为误差)提高了16.0%,标准误差降低了20.9%(T&E成本)。最后,MTPI-MTSA用于四个自动训练的网络(例如FCN,SEG-NET,U-NET和SEG-RES-NET 50),并表明最佳的SEG-RES-NET 50获得了95.2%WPA(准确性)和90.9%的WIOU。本研究为复杂的植被信息收集提供了一种有效的自动培训方法,该方法提供了减少深度学习的手动干预的参考。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
印度政府化学和化肥部药品部 (DoP) 已委托 Biovantis Healthcare Private Limited (Biovantis) 编写本报告,该报告以 Biovantis 的独立研究和分析为基础。保留所有权利。本报告和相关工作的所有版权均归药品部 (DoP) 和 Biovantis Healthcare Private Limited 所有。本报告利用了一手和二手数据以及从各种来源获取的信息,例如文章(同行评审和一般)和对顶尖专家的访谈。专家和关键意见领袖表达的观点仅代表个人观点,不应代表他们所从事专业工作的组织。本报告仅供参考。尽管在编写本报告的过程中已尽应尽的义务确保信息准确无误,符合 Biovantis 和 DoP 的知识和信念,但报告内容无论如何都不能理解为专业建议的替代品。 Biovantis 和 DoP 既不推荐也不认可本报告中提及的任何特定产品或服务,也不对因依赖本报告而做出的决策结果承担任何责任。对于因用户依赖或接受本报告任何部分的指导而导致的任何行为或疏忽而产生的任何直接或间接损失,Biovantis 和 DoP 均不承担任何责任。
1。概述2 2。记分卡设计和结构2 2.1。排除和未来的发展3 3.指标开发4 3.1。相关记分卡计划5 4。2024版的更新和修订6 4.1第三方审计和认证方案6 5。点扣除7 6。对报告7气候和环境的公司分析8 6.1。无化石和环境可持续的供应链:背景8 6.2。无化石和环境可持续的供应链:重点区域8 6.3。主题:背景,指标概述和评分方法9 6.3.1。无化石和环境可持续的供应链(一般)9 6.3.2。无化石和环境可持续的钢9 6.3.3。 无化石和环境可持续的铝11 6.3.4。 无化石和环境可持续的电池12 6.3.5。 气候政策游说13 7。 尊重人权14 7.1。 尊重人权:背景14 7.2。 尊重人权:重点领域14 7.3。 主题:背景,指标概述和评分方法15 7.3.1。 尊重人权(一般)16 7.3.2。 过渡矿物的负责采购16 7.3.3。 尊重土著权利17 7.3.4。 尊重工人权利18 7.3.5。 争议和危险信号;进度和绿旗19 8。无化石和环境可持续的钢9 6.3.3。无化石和环境可持续的铝11 6.3.4。无化石和环境可持续的电池12 6.3.5。气候政策游说13 7。尊重人权14 7.1。尊重人权:背景14 7.2。尊重人权:重点领域14 7.3。主题:背景,指标概述和评分方法15 7.3.1。尊重人权(一般)16 7.3.2。过渡矿物的负责采购16 7.3.3。尊重土著权利17 7.3.4。尊重工人权利18 7.3.5。争议和危险信号;进度和绿旗19 8。公司选择19附录22附录1:指标和分数属性的完整列表22附录2:加权方法48附录3:评估第三方审计和认证方案49