科学监测是科学建议的基本基础。除其他外,监测旨在有助于理解人为使用的影响(例如fineries),股票的健康,个人和保护和保护措施的有效性(例如,mpas)。监测对底栖鱼类和底栖鱼类社区的监测通常是基于诸如底部拖网(Tostal Trawing)之类的侵入性方法,但是在某些情况下,侵入性方法可能较少。需要越来越多的海洋保护区和风力,在这种情况下,由于保守或技术和安全原因无法部署诸如拖网等传统方法,因此支持了越来越多的侵入性监测方法。为了支持新的监测概念的发展,我们进行了文献综述,以确定已经可用的方法的限制和机会。此外,我们提出了一个目的指南,可以帮助确定用于个人目的的适当方法。我们定义了使用四个不同标准分析的八种不同方法,并列出了它们的优势和缺点。我们将本指南进一步应用于波罗的海海洋保护区的监测,这表明除了传统的底部拖网,替代性和侵入性较低的方法外,还可以针对特定的研究目的。因此,我们鼓励科学家和经理考虑替代数据收集方法,以最大程度地减少科学抽样的环境影响。但是,我们的结果还表明,大多数方法仍然需要进一步的修改,尤其是在采样设计,方法的标准化以及与既定的调查方法的可比性方面。
modeofaction.detergentsmechanallicelatelyremovethemicroermenismssssurfaces(例如,皮肤,dirtycloths)on thehichththeareareApplied。分散sanddirtsand,asaresult,themicroermanismsbecomeenmeshedinthe the洗涤剂'slatherandareremeveremevbybytherinsewater.ever,anumberofCompodCompOndShave be IncorporatedIntertodertodertodetertodetertstodertstoindodetertstoincrobicirobicidalactivitivition。
甘蔗是世界上最重要的糖和能源作物。在甘蔗育种期间,技术是需求,方法是手段。我们知道,种子是甘蔗产业发展的基石。Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses.Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic生物学,结合遥感和深度学习等信息技术。鉴于此,我们从技术和方法的角度专注于甘蔗育种,回顾了主要历史,指出了当前的状态和挑战,并为智能育种前景提供了合理的前景。
识别导致神经遗传疾病的 DNA 变异的主要瓶颈是 VUS 的功能分析。本研究的目的是通过在 NPC 和斑马鱼中使用 CRISPR/Cas9 基因组编辑来开发一种方法,以对在巨脑回患者中观察到的候选致病变异进行建模。通过 aCGH 和 WES 分析了 20 名巨脑回/无脑回患者的 DNA,并确定了变异的优先级。通过使用 CRISPR/Cas9 基因组编辑在 NPC 和斑马鱼中生成突变系,并与已知在巨脑回/无脑回中发挥作用的三个关键基因(TUBG1、LIS1、DAB1)之一的模型进行了比较。使用 3D 基质胶腔系统 (ICChip) 对 NPC 进行表征,并在 3 dpf 和 5 dpf 时观察到发育中的斑马鱼的表型变化。使用 qPCR 对目标突变系和选定的变体系进行了比较。与对照组相比,在 3 个选定基因的突变 NPC 系中观察到迁移延迟。WES 确定了两个候选变体,CGREF1 和 NOL9。观察到 CGREF1KO 斑马鱼和 CGREF1KONPC 中无脑畸形和小头畸形相关基因和神经元分化基因的表达变化。在 Tubg1 突变斑马鱼中观察到严重的表型,包括小头和小眼,以及肝脏/肠道发育异常。我们的研究结果证明,使用 NPC 和斑马鱼模型可以以省时省钱的方式测试导致与 NPC 迁移相关的缺陷的变异。多组学分析可以进一步将这种方法的使用范围扩展到其他神经遗传缺陷组。该项目由 TUBITAKCOST Action 资助,代码号为 217S944。
摘要。研究相关性是由在难以到达条件下改善对象大小的测量过程的需要决定的。在现代工业环境中,高测量精度对于确保安全和最大化生产过程的效率至关重要,对该主题的研究在快速技术发展和提高生产质量要求的背景下是相关的。该研究旨在评估使用现代计算机视觉方法在困难的技术条件下测量和重建对象的可能性,例如水 - 水功率反应堆的封闭。该研究采用了3D摄影测量方法,包括立体声和多视图立体声的深度,以及运动方法的结构。研究确定,现代计算机视觉方法,特别是机器学习方法,可以成功地用于在难以到达的条件下测量和重建对象。研究表明,在理想条件下,从测量设备到对象的测量精度可以达到接近1 mm的值。同时,与立体声方法的深度相比,多视图立体法揭示了误差的空间分布更大的均匀性。在实践中,在真实照片的条件下,多视图立体声方法最需要准确地确定相机的位置。由于其对摄像机确切坐标的需求较低,立体声方法的深度显示出更好的结果,显示出较小的测量误差。这项研究强调了使用所提出的方法区分
P.Viridis Parana-Brazil PP702447.1 608-P.Viridis Kochin-India JN179068.1 650(Gilg等,2013) (Gilg等,2013) DQ917612.1 617(Wood等,2007)P.Viridis India Southern DQ917586.1 617(Wood等,2007)P.Viridis Philippines DQ917599.1 617(Wood等,2007,2007年) Luanda-Gangola KC692001.1 614(Cunha等,2014)P。Perna Punta d'Ovo-Mozambique KC692009.1 614(Cunha等,2014)P。Perna swakopmund-nemibia-nemibia kc692005.1 614(CC692005.1 614(Cunha et al。 (Cunha等,2014)P。Perna Gans Bay-South Africa KC691990.1 614(Cunha等,2014)P。Bizerte-Tunisia KC691986.1 614(Cunha等,2014,2014)P。非洲DQ917618.1 617(Wood et al wood et aul et p。 P. Perna Santa Catarina-Brazil DQ917594.1 617(Wood等,2007)P。Perna Sao Paulo-Brazil DQ917592.1 617(Wood等,2007)P。Canalicus houhora houhora houhora new new n-new n-new new Zealand dq917607.1 617(Wood1 7 Z17) Al。,2007)P。Canaliculus gore-new新西兰DQ917608.1 617(Wood等,2007)P。Canalia New Zealand DQ917609.1 617(Wood等,2007) Zealand DQ917614.1 620(Wood等,2007) div>
精确农业涉及使用实时信息来增强对资源的有效利用和对农业方法的监督,同时却最大程度地减少了不利的环境影响。多亏了遥感技术的进步,现在在农业部门中生产了大量的大数据。当使用机器和深度学习技术进行分析时,该数据需要转换为有价值的信息,已证明是有益的。这个研究主题“大数据,机器和深度学习的最新进展”吸引了20种高质量的文章,这些文章涵盖了现状的应用以及人工智能,大数据,特征优化,作物疾病检测和分类的精确农业的技术发展。在不断发展的农业景观中,三个关键主题已成为变革性变革的信标。本社论探讨了塑造农业未来的创新领域,重点是三个相互联系的主题:植物疾病检测和作物健康监测的进步,在精确农业中的人工智能(AI)和机器学习(ML)的整合以及用于作品生产优化的方法。在农业科学领域,由于开创性的研究努力,植物疾病检测和作物健康监测的动态景观已经取得了重大进展。Shoaib等。解决噬菌毒全球问题通过强调机器学习技术的关键作用来面对手动监测植物疾病的持续挑战。他们的工作提出了一个基于深度学习的系统,利用了在一个大量数据集中训练的卷积神经网络(Inception Net),其中包括18,161个细分和非细分的番茄叶图像。值得注意的是使用两个最先进的语义分割模型U-NET和修改的U-NET进行疾病检测和分割。结果展示了修改后的U-Net模型的出色性能,超过现有方法,并以高精度对植物疾病进行分类时的效率。
背景 - 已经开发出多种人体体外方法,人们对这些研究解决与临床(人体)药物使用和肿瘤病理生物学相关的问题的潜力非常感兴趣。这需要就如何评估现有证据的强度(即质量和数量)和此类研究的人类相关性达成一致。SAToRI-BTR(脑肿瘤研究体外方法的系统方法审查)项目旨在确定相关的评估标准,以帮助使用体外方法规划和/或评估脑肿瘤研究。目标 - 确定评估体外脑肿瘤研究质量和人类相关性的标准;评估此类标准对该领域工作的高级科学家的普遍接受度。方法 - 第一阶段涉及通过以下方式确定评估体外研究的潜在标准:(1)对脑肿瘤研究人员进行国际调查;(2)采访科学家、临床医生、监管者和期刊编辑;(3)分析相关报告、文件和已发表的研究。通过对研究结果进行内容分析,制定了脑肿瘤体外研究质量评估的初步标准清单。第二阶段由专家小组(德尔菲法)审查标准。结果 - 第一阶段的结果表明,体外研究的审查方法和质量差异很大,需要改进报告标准。确定了 129 项初步标准;删除了重复和高度特定于上下文的项目,最终有 48 项标准供专家(德尔菲法)小组审查。37 项标准达成一致,从而形成脑肿瘤研究体外研究评估的临时清单。结论 - 通过系统地整理评估标准并对其进行专家审查,SAToRI-BTR 已为体外脑肿瘤研究评估提供了初步指导。计划进一步制定该指导,包括研究适应和传播脑肿瘤研究不同子领域以及更广泛的体外领域的策略。
1简介1 2背景2 2.1什么是外泌体?2 2.2 Exosome structure and interaction 4 2.3 Application of exosomes 6 2.4 Isolation of exosomes 7 2.5 Quality control measures 8 2.6 The focus of this report 8 3 Non-chromatography methods for exosome purification 9 3.1 Ultracentrifugation 9 3.1.1 Advantages and disadvantages of ultracentrifugation 10 3.2 Ultrafiltration 10 3.2.1 Advantages and disadvantages of ultrafiltration 11 3.3 The principle of immunoaffinity 11 3.3.1 Advantages and disadvantages of immunoaffinity 11 3.4 Precipitation 12 3.4.1 Advantages and disadvantages of precipitation 12 3.5 Scalability of UC, UF and precipitation 13 4 Exosome purification using agarose chromatography techniques 14 4.1 Purification of exosomes based on size 16 4.1.1 Size-exclusion chromatography (SEC) 16 4.1.1.1 sec在EV和外部组中研究16 4.1.1.2使用SEC 17 4.1.1.3隔离EV的交联的Sepharose树脂,用于外部和EV-溶解的预包装的SEC柱18 4.1.1.4