背景:根据研究的 3R 原则,应尽可能限制动物的使用。尤其是对于初级科学家进行光生理和电生理手术技术的培训,在转向活体动物之前需要替代的培训工具。我们已经开发了一种经济高效的大鼠脑模型,用于训练各种手术技术,包括但不限于光遗传学、电生理学和颅内药物治疗。结果:我们的大脑模型创造了一种逼真的动物手术训练体验。手术的成功率(例如植入准确性)可以在模型大脑的横截面上轻松评估。此外,该模型允许练习电生理记录以及测试运动或光相关的伪影。与现有方法的比较:就必要的技术、注意事项和时间跨度而言,我们模型中的手术和记录体验与实际大鼠中的非常相似。与实际大鼠大脑的一些差异略微降低了我们模型与活体动物相比的难度。因此,入门级科学家可以先在我们的模型中学习基本技术,然后再学习活体动物中稍微复杂的程序。结论:我们的大脑模型是一种有用的培训工具,可以让刚进入电生理学和光遗传学操作领域的科学家掌握一套基本技能,然后再将其应用于活体动物。它可以适应所需的培训内容,甚至可以用于为更高级的科学家测试和优化新的实验室设备。
o 获得持续学习和知识更新的基本知识工具 o 学生将培养不断更新物理研究中的数学技术和技能的态度。 教学大纲 内容知识 度量空间。定义。例子。开集、闭集、邻域。拓扑空间。连续映射。稠密集、可分空间。收敛和柯西序列。完备性。例子。度量空间的完备性。巴拿赫空间。向量空间。范数空间。完备性和巴拿赫空间。例子:有限维空间、序列空间、函数空间。有界线性算子。连续性和有界性。BLT 定理。连续线性泛函和对偶空间。有界线性算子的巴拿赫空间。例子。测度论简介。勒贝格积分。Sigma 代数和 Borel 测度。可测函数。支配和单调收敛。富比尼定理。例子:绝对连续测度、狄拉克测度、康托测度。勒贝格分解定理。希尔伯特空间。内积。欧几里得空间和希尔伯特空间。正交性、勾股定理。贝塞尔不等式和柯西-施瓦茨不等式。三角不等式。平行四边形定律和极化恒等式。例子。直和。投影定理。Riesz-Fréchet 引理。正交系统和傅里叶系数。正交基和 Parseval 关系。Gram-Schmidt 正交化程序。与 l^2 同构。张量积和积基。希尔伯特空间上的线性算子。有界算子的 C ∗ -代数。正规、自伴、酉和投影算子。Baire 范畴定理。一致有界性原理。一致、强和弱收敛。一些量子力学。无界算子。伴生。对称和自伴算子。例子:乘法和导数算子。本质自伴算子。自伴性和本质自伴性的基本标准。图、闭包
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
• Tasos Aslidis,Marsoft(马萨诸塞州剑桥) • Costas Bardjis,Marsoft(马萨诸塞州剑桥) • Nikos Berstianos,Pyrsos Managing • Erik Broekhuizen,BulkNedlloyd(鹿特丹) • Hercules Charalambides,世界海事大学(马尔默) • John Coustas,Danaos Management Consultants • George Economou,Dry Bulk • Aris Gavrielides,Eletson Corporation • Costas Grammenos,城市大学(伦敦) • Dennis Hayter,MERC(鹿特丹) • John Karastamatis,Eletson Corporation • Nikos Karelis,Midland Bank • Michail Kokkinis,Link Maritime • Anastassios Kouverianos,Eletson Corporation • Nikos Kydonakis,瑞典俱乐部 • George Lertas,Eletson Corporation • Marianna Moschou,花旗银行 • Kees Oosterhout, BulkNedlloyd(鹿特丹)• George Panagakos,DAS International Consultants • Dimitrios Paizis,Eletson Corporation • Petros Pappas,Ocean Bulk • Iraklis Prokopakis,Styga Compania Naviera • Panos Solomonides,Midland Bank • George Spanos,Spanos Maritime and Trading • Terry Trikoglou,承销商 • Leonidas Valmas,A.Karaindros Marine • John Vassilakis,Aeolos • Maarten Volgers,MERC(鹿特丹)• Jelle Wolthuizen,Neddata(鹿特丹)• Mathios Zarbis,希腊联合航运与贸易公司
REID Miner,国家空中和溪流改善委员会,加利福尼亚空气资源委员会亚当·莫雷诺(Adam Moreno),贝特尼·穆尼兹·德尔加多(BethanyMuñozdelgado),美国农业部,自然资源保护服务局Mindy Selman,USDA,首席经济学家霍莉·蒙罗(Holly Munro)办公室,全国空气和流媒体委员会,美国国际空间和溪流改善委员会,USDA,USDA,USDA的首席经济司令部,Emill Fight of Emill of Emill Fight of Emill Field,kicka经济学家Jeffrey Privette,国家海洋与大气管理局Maya Patel,USDA,首席经济学家Kristan Reed办公室,康奈尔大学Abigail Edwards,USDA,USDA,首席经济学家Charles Rice办公室,堪萨斯州州立大学G. Philip Robertson,密歇根州州立大学Joe Rudek,Matthew Willial sallc sallc sallc sallc, USDA,农业研究服务Marty Schmer,USDA,农业研究服务Edie Sonne Hall,三棵树咨询,Kimberly Stackhouse lawson,科罗拉多州立大学克里斯汀·斯特芬,科罗拉多州立大学约翰大学,约翰·斯特勒,美国环境保护局,科罗拉多州环境保护局,科罗拉多州立大学,科罗拉多州立大学,科罗拉多州立大学。堪萨斯州立大学Tristram West,美国能源部汤姆·沃思,美国环境保护局Zhiliang Zhu,美国地质调查局REID Miner,国家空中和溪流改善委员会,加利福尼亚空气资源委员会亚当·莫雷诺(Adam Moreno),贝特尼·穆尼兹·德尔加多(BethanyMuñozdelgado),美国农业部,自然资源保护服务局Mindy Selman,USDA,首席经济学家霍莉·蒙罗(Holly Munro)办公室,全国空气和流媒体委员会,美国国际空间和溪流改善委员会,USDA,USDA,USDA的首席经济司令部,Emill Fight of Emill of Emill Fight of Emill Field,kicka经济学家Jeffrey Privette,国家海洋与大气管理局Maya Patel,USDA,首席经济学家Kristan Reed办公室,康奈尔大学Abigail Edwards,USDA,USDA,首席经济学家Charles Rice办公室,堪萨斯州州立大学G. Philip Robertson,密歇根州州立大学Joe Rudek,Matthew Willial sallc sallc sallc sallc, USDA,农业研究服务Marty Schmer,USDA,农业研究服务Edie Sonne Hall,三棵树咨询,Kimberly Stackhouse lawson,科罗拉多州立大学克里斯汀·斯特芬,科罗拉多州立大学约翰大学,约翰·斯特勒,美国环境保护局,科罗拉多州环境保护局,科罗拉多州立大学,科罗拉多州立大学,科罗拉多州立大学。堪萨斯州立大学Tristram West,美国能源部汤姆·沃思,美国环境保护局Zhiliang Zhu,美国地质调查局
Ahmad Aqel IfSeii分析化学学院化学系国王SAUD University P.O.分析化学学院 框2455 Riyadh 11451沙特阿拉伯大楼:05,办公室:2A/149&AA/53 TEL。 014674198,传真:014675992网站:http://fac.ksu.edu.sa/aifseisi e-mail e-mail:ahmad3qel@yahoo@yahoo@yahoo.com aifseisi@ksu.edu.sa.sa /div>Ahmad Aqel IfSeii分析化学学院化学系国王SAUD University P.O.分析化学学院框2455 Riyadh 11451沙特阿拉伯大楼:05,办公室:2A/149&AA/53 TEL。 014674198,传真:014675992网站:http://fac.ksu.edu.sa/aifseisi e-mail e-mail:ahmad3qel@yahoo@yahoo@yahoo.com aifseisi@ksu.edu.sa.sa /div>框2455 Riyadh 11451沙特阿拉伯大楼:05,办公室:2A/149&AA/53 TEL。014674198,传真:014675992网站:http://fac.ksu.edu.sa/aifseisi e-mail e-mail:ahmad3qel@yahoo@yahoo@yahoo.com aifseisi@ksu.edu.sa.sa
有限差分时间域(FDTD)方法是一种用于复杂介质和详细几何形状电磁场全波分析的广泛数值工具。FDTD方法的应用涵盖了一定的时间和空间尺度,从亚原子到银河系长到银河系,从经典到量子物理学。从FDTD方法中受益的技术领域包括生物医学 - 生物成像,生物素化学,生物电子学和生物传感器;地球物理学 - 遥感,通信,太空天气危害和地理位置;超材料 - 次波长聚焦镜片,电磁斗篷和连续扫描泄漏的波天线;光学 - 衍射光学元件,光子带隙结构,光子晶体波导和环形谐振器设备;血浆 - 等离子波导和天线;和量子应用 - 量子设备和量子雷达。该底漆总结了FDTD方法的主要特征,以及关键扩展,使能够为不同的研究问题获得准确的解决方案。此外,还讨论了硬件注意事项,以及如何从FDTD模型的输出中提取大小和相位数据,布里鲁因图和散射参数的示例。底漆以讨论正在进行的挑战和机会的讨论结束,以进一步增强当前和未来应用的FDTD方法。
3 Generalized Cumulants 61 3.1 Introduction and definitions 61 3.2 The fundamental identity for generalized cumulants 62 3.3 Cumulants of homogeneous polynomials 64 3.4 Polynomial transformations 65 3.5 Complementary set partitions 68 3.5.1 Equivalence classes 68 3.5.2 Symbolic computation 69 3.6 Elementary lattice theory 70 3.6.1 Generalities 70 3.6.2分区晶格的m obius功能72 3.6.3包含 - 排斥和二进制晶格74 3.6.4累积和分区晶格75 3.6.5累积的进一步关系77 3.7一些示例77 3.7一些涉及线性模型80 3.8累积空间82 3.9 Gaussian Momments 82 Rysents 85 3.9.19.1.1 issers85。拉普拉斯近似88 3.10.1两人分期膨胀88 3.10.2正式拉普拉斯扩张89 3.11书目注释90 3.12进一步的结果和练习3 92